Submitted:
24 March 2023
Posted:
27 March 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Machine learning-based forecasting of Renewable energy
2.1. Overview of ML
2.2. ML types and algorithms used for Renewable energy forecasting
2.2.1. Supervised Learning:
2.2.2. Unsupervised Learning
2.2.3. Reinforcement Learning Algorithms
3. Renewable energy forecasting using Deep learning (DL)
3.1. DL algorithms used for Renewable energy forecasting
3.1.1. ANN for Renewable energy forecasting
2.1.2. CNN for Renewable energy forecasting
2.1.3. RNN for Renewable energy forecasting
2.1.4. RBM for Renewable energy forecasting
2.1.5. Auto Encoder for Renewable energy forecasting
2.1.6. Deep belief neural networks (DBN) for Renewable energy forecasting
2.1.7. ANFIS for Renewable energy forecasting
2.1.8. Wavelet Neural Network (WNN) for Renewable energy forecasting
2.1.9. RBNN for Renewable energy forecasting
2.1.10. GRNN for Renewable energy forecasting
2.1.11. ELM for Renewable energy forecasting
2.1.12. Ensemble Learning for Renewable energy forecasting
2.1.13. Transfer Learning (TL) for Renewable energy forecasting
2.1.14. Hybrid model (HM) for forecasting Renewable energy
4. Challenges and Future Prospects
5. Conclusion
References
- D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strateg. Rev. 2019, 24, 38–50. [CrossRef]
- P.S.A. Review, W. Strielkowski, E. Tarkhanova, M. Tvaronaviˇ, Y. Petrenko, Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review, Energies. 2021, 14, 8240.
- G.A. Tiruye, A.T. Besha, Y.S. Mekonnen, N.E. Benti, G.A. Gebreslase, R.A. Tufa, Opportunities and Challenges of Renewable Energy Production in Ethiopia, Sustain. 2021, 13, 10381.
- N. E. Benti, T.A. Woldegiyorgis, C.A. Geffe, G.S. Gurmesa, M.D. Chaka, Y.S. Mekonnen, Overview of Geothermal Resources Utilization in Ethiopia: Potentials, Opportunities, and Challenges, Sci. African 2023, 19, e01562. [Google Scholar] [CrossRef]
- N. Ermias, A. Berta, C. Amente, Y. Setarge, Biodiesel production in Ethiopia : Current status and future prospects, Sci. African 2023, 19, e01531. [Google Scholar] [CrossRef]
- N. E. Benti, Y.S. Mekonnen, A.A. Asfaw, Combining green energy technologies to electrify rural community of Wollega, Western Ethiopia, Sci. African 2023, 19, e01467. [Google Scholar] [CrossRef]
- C. R.K. J, M.A. Majid, Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy, Sustainability and Society, 10(1) | 10.1186/s13705-019-0232-1, Energy. Sustain. Soc. 2020, 10, 1–36. [Google Scholar] [CrossRef]
- P.Denholm, D.J. Arent, S.F. Baldwin, D.E. Bilello, G.L. Brinkman, J.M. Cochran, W.J. Cole, B. Frew, V. Gevorgian, J. Heeter, B.M.S. Hodge, B. Kroposki, T. Mai, M.J. O’Malley, B. Palmintier, D. Steinberg, Y. Zhang, The challenges of achieving a 100% renewable electricity system in the United States, Joule. 2021, 5, 1331–1352. [CrossRef]
- M.S. Nazir, F. Alturise, S. Alshmrany, H.M.J. Nazir, M. Bilal, A.N. Abdalla, P. Sanjeevikumar, Z.M. Ali, Wind generation forecasting methods and proliferation of artificial neural network: A review of five years research trend, Sustainability. 2020, 12, 3778. [CrossRef]
- L. Lledó, V. Torralba, A. Soret, J. Ramon, F.J. Doblas-Reyes, Seasonal forecasts of wind power generation, Renew. Energy. 2019, 143, 91–100. [Google Scholar] [CrossRef]
- E. Alhamer, A. Grigsby, R. Mulford, The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States, Energies. 2022, 15, 7516. [CrossRef]
- S. Impram, S. Varbak Nese, B. Oral, Challenges of renewable energy penetration on power system flexibility: A survey, Energy Strateg. Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Ghalehkhondabi, E. Ardjmand, G.R. Weckman, W.A. Young, An overview of article-title demand forecasting methods published in 2005–2015, Energy Syst. 2017, 8, 411–447. [Google Scholar] [CrossRef]
- Krechowicz, M. Krechowicz, K. Poczeta, Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources, Energies. 2022, 15, 1–41. [Google Scholar] [CrossRef]
- J. Fan, L. Wu, F. Zhang, H. Cai, W. Zeng, X. Wang, Empirical and machine learning models for predicting daily global solar radiation from sunshine duration : A review and case study in China, Renew. Sustain. Energy Rev. 2019, 100, 186–212. [Google Scholar] [CrossRef]
- C. Voyant, G. Notton, S. Kalogirou, M. Nivet, F. Motte, A. Fouilloy, Machine Learning methods for solar radiation forecasting: a review, Renew. Energy 2016, 105, 569–582. [Google Scholar] [CrossRef]
- J. Huertas-tato, R. Aler, I.M. Galván, F.J. Rodríguez-benítez, C. Arbizu-barrena, D. Pozo-vázquez, A short-term solar radiation forecasting system for the Iberian Peninsula. Part 2 : Model blending approaches based on machine learning, Sol. Energy 2020, 195, 685–696. [Google Scholar] [CrossRef]
- A. E. Gürel, Ü. Ağbulut, Y. Biçen, Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation, J. Clean. Prod. 2020, 277, 122353. [Google Scholar] [CrossRef]
- M. Alizamir, S. Kim, O. Kisi, M. Zounemat-kermani, A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions, Energy. 2020, 197, 117239. [CrossRef]
- R. Srivastava, A.N. Tiwari, V.K. Giri, Solar radiation forecasting using MARS, CART, M5, and random forest model : A case study for India, Heliyon. 2019, 5, e02692. [CrossRef]
- Khosravi, R.N.N. Koury, L. Machado, J.J.G. Pabon, Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms, J. Clean. Prod. 2018, 176, 63–75. [Google Scholar] [CrossRef]
- Li, S. Lin, F. Xu, D. Liu, J. Liu, Short-term wind power prediction based on data mining technology and improved support support vector machine method: A case study in Northwest China, J. Clean. Prod. 2018, 205, 909–922. [Google Scholar] [CrossRef]
- W. Yang, J. Wang, H. Lu, T. Niu, P. Du, Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: a case study in China, J. Clean. Prod. 2019, 222, 942–959. [Google Scholar] [CrossRef]
- Z. Lin, X. Liu, Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network, Energy. 2020, 201, 117693. [CrossRef]
- Zendehboudi, M.A. Baseer, R. Saidur, Application of support vector machine models for forecasting solar and wind energy resources : A review, J. Clean. Prod. 2018, 199, 272–285. [Google Scholar] [CrossRef]
- J. Wang, J. Hu, A robust combination approach for short-term wind speed forecasting and analysis e Combination of the ARIMA ( Autoregressive Integrated Moving Average ), ELM ( Extreme Learning Machine ), SVM ( Support Vector Machine ) and LSSVM ( Least Square SVM ) forec, Energy. 2015, 93, 41–56. [CrossRef]
- H. Demolli, A. Sakir, A. Ecemis, M. Gokcek, Wind power forecasting based on daily wind speed data using machine learning algorithms, Energy Convers. Manag. 2019, 198, 111823. [Google Scholar] [CrossRef]
- L. Xiao, W. Shao, F. Jin, Z. Wu, A self-adaptive kernel extreme learning machine for short-term wind speed forecasting, Appl. Soft Comput. J. 2020, 99, 106917. [Google Scholar] [CrossRef]
- E. Cadenas, W. Rivera, R. Campos-amezcua, C. Heard, Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model, Energies. 2016, 9, 109. [CrossRef]
- L. Li, X. Zhao, M. Tseng, R.R. Tan, Short-term wind power forecasting based on support vector machine with improved dragon fl y algorithm, J. Clean. Prod. 2020, 242, 118447. [Google Scholar] [CrossRef]
- Z. Tian, Engineering Applications of Artificial Intelligence Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM ✩, Eng. Appl. Artif. Intell. 2020, 91, 103573. [Google Scholar] [CrossRef]
- Y. Hong, T. Rienda, A. Satriani, Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network, Energy. 2020, 209, 118441. [CrossRef]
- M. I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science (80-. ). 2015, 349, 255–260.
- J.G. Carbonell, R.S. J.G. Carbonell, R.S. Michalski, T.M. Mitchell, AN OVERVIEW OF MACHINE LEARNING, Morgan Kaufmann., 1983. [CrossRef]
- W. Hua, A.R. W. Hua, A.R. Learning, A Brief Review of Machine Learning and its Application, in: 2009 Int. Conf. Inf. Eng. Comput. Sci., 2009: pp. 1–4.
- K. G. Liakos, P. Busato, D. Moshou, S. Pearson, Machine Learning in Agriculture : A Review, Sensors. 2018, 18, 2674. [CrossRef] [PubMed]
- K. Alanne, S. Sierla, An overview of machine learning applications for smart buildings, Sustain. Cities Soc. 2022, 76, 103445. [Google Scholar] [CrossRef]
- P.L.D. Atienza, J.D.-R.A. P.L.D. Atienza, J.D.-R.A. Ogbechie, C.P.-S.C. Bielza, Industrial Applications of Machine Learning, CRC Press, Taylor & Francis Group, New York, 2019.
- J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and applications of machine learning in solid- state materials science, Npj Comput. Mater. 2019, 83, 1–36. [Google Scholar] [CrossRef]
- Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A.K. Nandi, Applications of machine learning to machine fault diagnosis : A review and roadmap, Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- S. Kushwaha, S. Bahl, A.K. Bagha, K. Singh, M. Javaid, A. Haleem, R.P. Singh, Significant Applications of Machine Learning for COVID-19 Pandemic, J. Ind. Integr. Manag. Artic. 2020, 5, 453–479. [Google Scholar] [CrossRef]
- F. Recknagel, Applications of machine learning to ecological modelling, Ecol. Modell. 2001, 146, 303–310. [Google Scholar] [CrossRef]
- J. Joseph, C. Torney, M. Kings, A. Thornton, J. Madden, Applications of machine learning in animal behaviour studies, Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- I. H. Sarker, Machine Learning: Algorithms, Real-World Applications and Research Directions, SN Comput. Sci. 2021, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- B. Liu, Exploring Hyperlinks, Contents, and Usage Data, Second Edi, Spinger Heidelberg, Dordrecht London New York, 2011.
- R. Miorelli, A. Kulakovskyi, B. Chapuis, O.D. Almeida, O. Mesnil, Supervised learning strategy for classification and regression tasks applied to aeronautical structural health monitoring problems, Ultrasonics. 2021, 113, 106372. [CrossRef] [PubMed]
- E. I. Knudsen, Supervised learning in the brain, J. Neurosci. 1994, 14, 3985–3997. [Google Scholar] [CrossRef] [PubMed]
- P.C. Sen, M. P.C. Sen, M. Hajra, M. Ghosh, Supervised Classification Algorithms in Machine Learning: A Survey and Review, in: Adv. Intell. Syst. Comput., Springer Nature, Singapore, 2020: pp. 99–111. [CrossRef]
- S. Xie, Y. Liu, Improving supervised learning for meeting summarization using sampling and regression, Comput. Speech Lang 2010, 24, 495–514. [Google Scholar] [CrossRef]
- R. Caruana, An Empirical Comparison of Supervised Learning Algorithms, in: 23rd Int. Con- Ference Mach. Learn., Pittsburgh, PA, 2006: pp. 161–168.
- D. H. Maulud, A.M. Abdulazeez, A Review on Linear Regression Comprehensive in Machine Learning, J. Appl. Sci. Technol. Trends 2020, 01, 140–147. [Google Scholar] [CrossRef]
- E.G. Tomer, R. E.G. Tomer, R. Jain;, A. Gupta;, Uma, Regression Analysis of COVID-19 using Machine Learning Algorithms, in: Proc. Int. Conf. Smart Electron. Commun., 2020: pp. 65–71.
- K. Mahmud, S. Azam, A. Karim, S.M. Zobaed, B. Shanmugam, D. Mathur, Machine Learning Based PV Power Generation Forecasting in Alice Springs, IEEE Access. 2021, 9, 46117–46128. [CrossRef]
- S. M. Learning, Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning, Sensors. 2019, 19, 3092.
- S. Ibrahim, I. Daut, Y.M. Irwan, M. Irwanto, N. Gomesh, Z. Farhana, Linear Regression Model in Estimating Solar Radiation in Perlis, Energy Procedia. 2012, 18, 1402–1412. [CrossRef]
- P. Ekanayake, A.T. Peiris, J.M.J.W. Jayasinghe, U. Rathnayake, Development of Wind Power Prediction Models for Pawan Danavi Wind Farm in Sri Lanka, Math. Probl. Eng. 2021, 2021, 4893713. [Google Scholar]
- M. Y. Erten, H. Aydilek, Solar Power Prediction using Regression Models, Int. J. Eng. Res. Dev. 2022, 14, s333–s342. [Google Scholar] [CrossRef]
- C. H. Ho, C.J. Lin, Large-scale linear support vector regression, J. Mach. Learn. Res. 2012, 13, 3323–3348. [Google Scholar]
- D. Yuan, M. Li, H.Y. Li, C.J. Lin, B.X. Ji, Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm, Energies. 2022, 15, 6404. [CrossRef]
- J. Li, J.K. Ward, J. Tong, L. Collins, G. Platt, Machine learning for solar irradiance forecasting of photovoltaic system, Renew. Energy 2016, 90, 542–553. [Google Scholar] [CrossRef]
- R. Mwende, S. R. Mwende, S. Waita, G. Okeng, Real time photovoltaic power forecasting and modelling using machine learning techniques., in: E3S Web Conf., 2022: p. 02004. [CrossRef]
- B. Mahesh, Machine Learning Algorithms - A Review, Int. J. Sci. Res. 2020, 9. [Google Scholar] [CrossRef]
- S. Ray, A Quick Review of Machine Learning Algorithms, in: 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., IEEE, 2019: pp. 35–39.
- A. D. Kumari, J.P. Kumar, V.. Prakash, D. K.S, Supervised Learning Algorithms : A Comparison, Kristu Jayanti J. Comput. Sci. 2021, 1, 01–12. [Google Scholar]
- V. Jagadeesh, K.V. Subbaiah, J. Varanasi, Forecasting the probability of solar power output using logistic regression algorithm, J. Stat. Manag. Syst. ISSN 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Leo Breiman, Random Forests, Mach. Learn. 2001, 45, 5–32. [CrossRef]
- E. Hillebrand, M.C. Medeiros, The benefits of bagging for forecast models of realized volatility, Econom. Rev. 2010, 29, 571–593. [Google Scholar] [CrossRef]
- D. Vassallo, R. Krishnamurthy, T. Sherman, H.J.S. Fernando, Analysis of random forest modeling strategies for multi-stepwind speed forecasting, Energies. 2020, 13, 1–19. [CrossRef]
- K. Shi, Y. Qiao, W. Zhao, Q. Wang, M. Liu, Z. Lu, An improved random forest model of short-term wind-power forecasting to enhance accuracy, efficiency, and robustness, Wind Energy. 2018, 21, 1383–1394. [CrossRef]
- V.A. Natarajan, K. N. V.A. Natarajan, K. N. Sandhya, Wind Power Forecasting Using Parallel Random Forest Algorithm, in: Hybrid Artif. Intell. Syst. Part II, Spinger, 2015: p. 570.
- W. S. Noble, What is a support vector machine?, Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- G. Mountrakis, J. Im, C. Ogole, Support vector machines in remote sensing: A review, ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- J. Zeng, W. Qiao, Short-term solar power prediction using a support vector machine, Renew. Energy 2013, 52, 118–127. [Google Scholar] [CrossRef]
- R. Meenal, A.I. Selvakumar, Assessment of SVM, Empirical and ANN based solar radiation prediction models with most influencing input parameters, Renew. Energy 2018, 121, 324–343. [Google Scholar] [CrossRef]
- H.U. Dike, Y. 75. H.U. Dike, Y. Zhou, K.K. Deveerasetty, Q. Wu, Unsupervised Learning Based On Artificial Neural Network: A Review, in: 2018 IEEE Int. Conf. Cyborg Bionic Syst. CBS, p: China, 2019, 2019. [Google Scholar] [CrossRef]
- Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Unsupervised Learning Methods for Molecular Simulation Data, Chem. Rev. 2021, 121, 9722–9758. [Google Scholar] [CrossRef] [PubMed]
- J. Karhunen, T. J. Karhunen, T. Raiko, K.H. Cho, Unsupervised deep learning: A short review, in: Adv. Indep. Compon. Anal. Learn. Mach., Elsevier Inc., 2015: pp. 125–142. [CrossRef]
- M. Usama, J. Qadir, A. Raza, H. Arif, K.L.A. Yau, Y. Elkhatib, A. Hussain, A. Al-Fuqaha, Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges, IEEE Access. 2019, 7, 65579–65615. [CrossRef]
- J. P. Lai, Y.M. Chang, C.H. Chen, P.F. Pai, A survey of machine learning models in renewable energy predictions, Appl. Sci. 2020, 10, 5975. [Google Scholar] [CrossRef]
- J. Varanasi, M.M. Tripathi, K-means clustering based photo voltaic power forecasting using artificial neural network, particle swarm optimization and support vector regression, J. Inf. Optim. Sci. 2019, 40, 309–328. [Google Scholar] [CrossRef]
- Q. Xu, D. He, N. Zhang, C. Kang, Q. Xia, J. Bai, J. Huang, A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining, IEEE Trans. Sustain. Energy. 2015, 6, 1283–1291. [Google Scholar] [CrossRef]
- E. Scolari, F. Sossan, M. Paolone, Irradiance prediction intervals for PV stochastic generation in microgrid applications, Sol. Energy 2016, 139, 116–129. [Google Scholar] [CrossRef]
- K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement learning: A brief survey, IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- M. Botvinick, S. Ritter, J.X. Wang, Z. Kurth-Nelson, C. Blundell, D. Hassabis, Reinforcement Learning, Fast and Slow, Trends Cogn. Sci. 2019, 23, 408–422. [Google Scholar] [CrossRef] [PubMed]
- L. Buşoniu, D. 85. L. Buşoniu, D. Ernst, B. De Schutter, R. Babuška, Approximate reinforcement learning: An overview, in: IEEE SSCI 2011 Symp. Ser. Comput. Intell. - ADPRL, p: Symp. Adapt. Dyn. Program. Reinf. Learn., 2011, 2011. [Google Scholar] [CrossRef]
- R. Nian, J. Liu, B. Huang, A review On reinforcement learning: Introduction and applications in industrial process control, Comput. Chem. Eng. 2020, 139, 106886. [Google Scholar] [CrossRef]
- A. T.D. Perera, P. Kamalaruban, Applications of reinforcement learning in energy systems, Renew. Sustain. Energy Rev. 2021, 137, 110618. [Google Scholar] [CrossRef]
- W. Shi, S. Song, C. Wu, C.L.P. Chen, Multi Pseudo Q-Learning-Based Deterministic Policy Gradient for Tracking Control of Autonomous Underwater Vehicles, IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 3534–3546. [Google Scholar] [CrossRef] [PubMed]
- Grondman, L. Busoniu, G.A.D. Lopes, R. Babuška, A survey of actor-critic reinforcement learning: Standard and natural policy gradients, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 1291–1307. [Google Scholar] [CrossRef]
- D. Zhang, X. Han, C. Deng, Review on the research and practice of deep learning and reinforcement learning in smart grids, CSEE J. Power Energy Syst. 2018, 4, 362–370. [Google Scholar] [CrossRef]
- D. Cao, W. Hu, J. Zhao, G. Zhang, B. Zhang, Z. Liu, Z. Chen, F. Blaabjerg, Reinforcement Learning and Its Applications in Modern Power and Energy Systems: A Review, J. Mod. Power Syst. Clean Energy. 2020, 8, 1029–1042. [Google Scholar] [CrossRef]
- J. E. Sierra-García, M. Santos, Exploring reward strategies for wind turbine pitch control by reinforcement learning, Appl. Sci. 2020, 10, 1–23. [Google Scholar] [CrossRef]
- H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng, A review of deep learning for renewable energy forecasting, Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- M. Elsaraiti, A. Merabet, Solar Power Forecasting Using Deep Learning Techniques, IEEE Access. 2022, 10, 31692–31698. [CrossRef]
- M. Dougherty, A review of neural networks applied to transport, Transp. Res. Part C. 1995, 3, 247–260. [Google Scholar] [CrossRef]
- N. Shahid, T. Rappon, W. Berta, Applications of artificial neural networks in health care organizational decision-making: A scoping review, PLoS One. 2019, 14, 1–22. [CrossRef]
- M. W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences, Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- X. Yaot, A Review of Evolutionary Artificial Neural Networks, Int. J. Intell. Syst. 1993, 4, 203–222. [Google Scholar]
- M. R.G. Meireles, P.E.M. Almeida, M.G. Simões, A comprehensive review for industrial applicability of artificial neural networks, IEEE Trans. Ind. Electron. 2003, 50, 585–601. [Google Scholar] [CrossRef]
- E. Izgi, A. Öztopal, B. Yerli, M.K. Kaymak, A.D. Şahin, Short-mid-term solar power prediction by using artificial neural networks, Sol. Energy. 2012, 86, 725–733. [Google Scholar] [CrossRef]
- C. Chen, S. Duan, T. Cai, B. Liu, Online 24-h solar power forecasting based on weather type classification using artificial neural network, Sol. Energy. 2011, 85, 2856–2870. [Google Scholar] [CrossRef]
- J. 12 ( 2020. [CrossRef]
- T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Solar energy prediction for Malaysia using artificial neural networks, Int. J. Photoenergy. [CrossRef]
- G. Perveen, M. Rizwan, N. Goel, P. Anand, Artificial neural network models for global solar energy and photovoltaic power forecasting over India, Energy Sources, Part A Recover. Util. Environ. Eff. 2020, 00, 1–26. [Google Scholar] [CrossRef]
- S. Kumar, T. Kaur, Development of ANN Based Model for Solar Potential Assessment Using Various Meteorological Parameters, Energy Procedia. 2016, 90, 587–592. [CrossRef]
- P. Neelamegam, V. Arasu, Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms, J. Appl. Res. Technol. 2016, 14, 206–214. [Google Scholar] [CrossRef]
- T. A. Woldegiyorgis, A. Admasu, N.E. Benti, A.A. Asfaw, A Comparative Evaluation of Artificial Neural Network and Sunshine Based models in prediction of Daily Global Solar Radiation of Lalibela, Ethiopia, Cogent Eng. 2022, 9, 0–12. [CrossRef]
- J. Jamii, M. Mansouri, M. Trabelsi, Effective arti fi cial neural network-based wind power generation and load demand forecasting for optimum energy management, Front. Energy Res. 2022, 10, 898413. [Google Scholar] [CrossRef]
- Q. Chen, K. Q. Chen, K. Folly, Effect of Input Features on the Performance of the ANN-based Wind Power Forecasting, in: 2019 South. African Univ. Power Eng. Conf. Mechatronics/Pattern Recognit. Assoc. South Africa, IEEE, 2019: pp. 673–678. [CrossRef]
- MuhaMohammad Mahdi Forootan;, L. Iman;, Z. Rahim;, AhmadiAbolfazl, Machine Learning and Deep Learning in Energy Systems: A Review, Sustain. 2022, 14, 4832. [CrossRef]
- G. Yao, T. Lei, J. Zhong, A review of Convolutional-Neural-Network-based action recognition, Pattern Recognit. Lett. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- M.W. Akram, G. Li, Y. Jin, X. Chen, C. Zhu, X. Zhao, A. Khaliq, M. Faheem, A. Ahmad, CNN based automatic detection of photovoltaic cell defects in electroluminescence images, Energy. 2019, 189, 116319. [CrossRef]
- M.M. Bejani, M. M.M. Bejani, M. Ghatee, A systematic review on overfitting control in shallow and deep neural networks, Springer Netherlands, 2021. [CrossRef]
- M. T., McCann, K.H. Jin, M. Unser, Convolutional Neural Networks for Inverse problems in imaging, IEEE Signal Process. Mag. (2017) 85–95. [CrossRef]
- C. Qian, B. Xu, L. Chang, B. Sun, Q. Feng, D. Yang, Y. Ren, Z. Wang, Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries, Energy. 2021, 227, 120333. [CrossRef]
- Ajit, K. Acharya, A. Samanta, A Review of Convolutional Neural Networks, in: Int. Conf. Emerg. Trends Inf. Technol. Eng. Ic-ETITE. [CrossRef]
- Y. Lin, I. Y. Lin, I. Koprinska, M. Rana, Temporal Convolutional Neural Networks for Solar Power Forecasting, in: Proc. Int. Jt. Conf. Neural Networks, 2020: pp. 1–8. [CrossRef]
- W. Lee, K. Kim, J. Park, J. Kim, Y. Kim, Forecasting solar power using long-short term memory and convolutional neural networks, IEEE Access. 2018, 6, 73068–73080. [CrossRef]
- N. Dong, J.F. Chang, A.G. Wu, Z.K. Gao, A novel convolutional neural network framework based solar irradiance prediction method, Int. J. Electr. Power Energy Syst. 2020, 114, 105411. [Google Scholar] [CrossRef]
- K. Aurangzeb, S. Aslam, S.I. Haider, S.M. Mohsin, S. ul Islam, H.A. Khattak, S. Shah, Energy forecasting using multiheaded convolutional neural networks in efficient renewable energy resources equipped with energy storage system, Trans. Emerg. Telecommun. Technol. 2022, 33, 1–14. [Google Scholar] [CrossRef]
- S.C. Lim, J.H. Huh, S.H. Hong, C.Y. Park, J.C. Kim, Solar Power Forecasting Using CNN-LSTM Hybrid Model, Energies. 15 (2022). [CrossRef]
- B. Gao, X. Huang, J. Shi, Y. Tai, J. Zhang, Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks, Renew. Energy. 2020, 162, 1665–1683. [Google Scholar] [CrossRef]
- D. Cannizzaro, A. 123. D. Cannizzaro, A. Aliberti, L. Bottaccioli, E. Macii, A. Acquaviva, E. Patti, Solar radiation forecasting based on convolutional neural network and ensemble learning, Expert Syst. Appl. [CrossRef]
- Q. Wu, F. Guan, C. Lv, Y. Huang, Ultra-short-term multi-step wind power forecasting based on CNN-LSTM, IET Renew. Power Gener. 2020, 15, 1019–1029. [Google Scholar] [CrossRef]
- H. Hewamalage, C. Bergmeir, K. Bandara, Recurrent Neural Networks for Time Series Forecasting: Current status and future directions, Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- V.S. Lalapura, J. V.S. Lalapura, J. Amudha, H.S. Satheesh, Recurrent neural networks for edge intelligence: A survey, ACM Comput. Surv. 54 (2021). [CrossRef]
- J. Zhu, Q. Jiang, Y. Shen, C. Qian, F. Xu, Q. Zhu, Application of recurrent neural network to mechanical fault diagnosis: a review, J. Mech. Sci. Technol. 2022, 36, 527–542. [Google Scholar] [CrossRef]
- M. N. Fekri, H. Patel, K. Grolinger, V. Sharma, Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network, Appl. Energy. 2021, 282, 116177. [Google Scholar] [CrossRef]
- G. Yang, Y. Wang, X. Li, Prediction of the NOx emissions from thermal power plant using long-short term memory neural network, Energy. 2020, 192, 116597. [CrossRef]
- W. Zhang, X. Li, X. Li, Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation, Meas. J. Int. Meas. Confed. 2020, 164, 108052. [Google Scholar] [CrossRef]
- Kisvari, Z. Lin, X. Liu, Wind power forecasting – A data-driven method along with gated recurrent neural network, Renew. Energy. 2021, 163, 1895–1909. [Google Scholar] [CrossRef]
- M. Abdel-Nasser, K. Mahmoud, Accurate photovoltaic power forecasting models using deep LSTM-RNN, Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- A.K.& L.B. Ajay Pratap Yadav, RNN Based Solar Radiation Forecasting Using Adaptive Learning Rate, in: Swarm, Evol. Memetic Comput., Spinger, 2013: pp. 422–452.
- F. Harrou, A. Dairi, F. Kadri, Y. Sun, Effective forecasting of key features in hospital emergency department: Hybrid deep learning-driven methods, Mach. Learn. with Appl. 2022, 7, 100200. [Google Scholar] [CrossRef]
- Dedinec, S. Filiposka, A., Dedinec, L. Kocarev, Deep belief network based electricity load forecasting: An analysis of Macedonian case, Energy. 2016, 115, 1688–1700. [Google Scholar] [CrossRef]
- S. Hu, Y. Xiang, D. Huo, S. Jawad, J. Liu, An improved deep belief network based hybrid forecasting method for wind power, Energy. 2021, 224, 120185. [CrossRef]
- W. Yang, C. Liu, D. Jiang, An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring, Renew. Energy. 2018, 127, 230–241. [Google Scholar] [CrossRef]
- D. Yang, H.R. Karimi, K. Sun, Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples, Neural Networks. 2021, 141, 133–144. [CrossRef] [PubMed]
- C.M.A. Roelofs, M.A. Lutz, S. Faulstich, S. Vogt, Autoencoder-based anomaly root cause analysis for wind turbines, Energy AI. 2021, 4, 100065. [CrossRef]
- S. Daneshgar, R. Zahedi, Optimization of power and heat dual generation cycle of gas microturbines through economic, exergy and environmental analysis by bee algorithm, Energy Reports. 2022, 8, 1388–1396. [CrossRef]
- N. Renström, P. Bangalore, E. Highcock, System-wide anomaly detection in wind turbines using deep autoencoders, Renew. Energy. 2020, 157, 647–659. [Google Scholar] [CrossRef]
- Dairi, F. Harrou, Y. Sun, S. Khadraoui, Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach, Appl. Sci. 2020, 10, 1–20. [Google Scholar] [CrossRef]
- K.U. Jaseena, B.C. K.U. Jaseena, B.C. Kovoor, A hybrid wind speed forecasting model using stacked autoencoder and LSTM, J. Renew. Sustain. Energy. 12 (2020). [CrossRef]
- G. Fud, Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system, Energy. 2018, 148, 269–282. [CrossRef]
- X. Hao, T. Guo, G. Huang, X. Shi, Y. Zhao, Y. Yang, Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window, Energy. 2020, 207, 118256. [CrossRef]
- X. Sun, G. Wang, L. Xu, H. Yuan, N. Yousefi, Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm, Energy. 237 (2021). [CrossRef]
- Y.Q. Neo, T.T. 147. Y.Q. Neo, T.T. Teo, W.L. Woo, T. Logenthiran, A. Sharma, Forecasting of photovoltaic power using deep belief network, IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON. 1189. [Google Scholar] [CrossRef]
- K. Wang, X. Qi, H. Liu, J. Song, Deep belief network based k-means cluster approach for short-term wind power forecasting, Energy. 2018, 165, 840–852. [CrossRef]
- C.T. Sun, J.S. C.T. Sun, J.S. Jang, Fuzzy modeling based on generalized neural networks and fuzzy clustering objective functions, in: Proc. IEEE Conf. Decis. Control, Brighton, England, 1991: pp. 2924–2929. [CrossRef]
- P. Tahmasebi, A. Hezarkhani, A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation, Comput. Geosci. 2012, 42, 18–27. [Google Scholar] [CrossRef]
- D. Karaboga, E. Kaya, Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey, Artif. Intell. Rev. 2019, 52, 2263–2293. [Google Scholar] [CrossRef]
- M. Nilashi, H. Ahmadi, L. Shahmoradi, O. Ibrahim, E. Akbari, A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique, J. Infect. Public Health. 2019, 12, 13–20. [Google Scholar] [CrossRef]
- Abd Al-Azeem Hussieny, M.A. El-Beltagy, S. El-Tantawy, Forecasting of renewable energy using ANN, GPANN and ANFIS (A comparative study and performance analysis), in: 2nd Nov. Intell. Lead. Emerg. Sci. Conf. NILES. [CrossRef]
- Mellit, A.H. Arab, N. Khorissi, H. Salhi, An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature, in: 2007 IEEE Power Eng. Soc. Gen. Meet. PES, 2007. [CrossRef]
- H. K. Yadav, Y. Pal, M.M. Tripathi, A novel GA-ANFIS hybrid model for short-term solar PV power forecasting in Indian electricity market, J. Inf. Optim. Sci. 2019, 40, 377–395. [Google Scholar] [CrossRef]
- R. M. Balabin, R.Z. Safieva, E.I. Lomakina, Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra, Chemom. Intell. Lab. Syst. 2008, 93, 58–62. [Google Scholar] [CrossRef]
- H.H. Aly, A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting, Energy. 2020, 213, 118773. [CrossRef]
- Z. Yuan, W. Wang, H. Wang, S. Mizzi, Combination of cuckoo search and wavelet neural network for midterm building energy forecast, Energy. 2020, 202, 117728. [CrossRef]
- H. H.H. Aly, A novel approach for harmonic tidal currents constitutions forecasting using hybrid intelligent models based on clustering methodologies, Renew. Energy. 2020, 147, 1554–1564. [Google Scholar] [CrossRef]
- Y. Shen, X. Wang, J. Chen, Wind power forecasting using multi-objective evolutionary algorithms for wavelet neural network-optimized prediction intervals, Appl. Sci. 8 (2018). [CrossRef]
- V. Sharma, D. Yang, W. Walsh, T. Reindl, Short term solar irradiance forecasting using a mixed wavelet neural network, Renew. Energy. 2016, 90, 481–492. [Google Scholar] [CrossRef]
- Z. Q. Wu, W.J. Jia, L.R. Zhao, C.H. Wu, Maximum wind power tracking based on cloud RBF neural network, Renew. Energy. 2016, 86, 466–472. [Google Scholar] [CrossRef]
- Y. Han, C. Fan, Z. Geng, B. Ma, D. Cong, K. Chen, B. Yu, Energy efficient building envelope using novel RBF neural network integrated affinity propagation, Energy. 2020, 209, 118414. [CrossRef]
- H. Cherif, A. Benakcha, I. Laib, S.E. Chehaidia, A. Menacer, B. Soudan, A.G. Olabi, Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor, Energy. 2020, 212, 118684. [CrossRef]
- X. Wu, B. X. Wu, B. Hong, X. Peng, F. Wen, J. Huang, Radial basis function neural network based short-term wind power forecasting with Grubbs test, in: 2011 4th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., IEEE Xplore, Weihai, China, 2011: pp. 1879–1882. [CrossRef]
- M. Madhiarasan, Accurate prediction of different forecast horizons wind speed using a recursive radial basis function neural network, Prot. Control Mod. Power Syst. 5 (2020). [CrossRef]
- Z. Ramedani, M. Omid, A. Keyhani, S. Shamshirband, B. Khoshnevisan, Potential of radial basis function based support vector regression for global solar radiation prediction, Renew. Sustain. Energy Rev. 2014, 39, 1005–1011. [Google Scholar] [CrossRef]
- D. F. Specht, A general regression neural network, IEEE Int. Conf. Neural Networks - Conf. Proc. 1991, 2, 568–576. [Google Scholar] [CrossRef]
- H. B. Celikoglu, Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling, Math. Comput. Model. 2006, 44, 640–658. [Google Scholar] [CrossRef]
- L. Wang, O. Kisi, M. Zounemat-Kermani, B. Hu, W. Gong, Modeling and comparison of hourly photosynthetically active radiation in different ecosystems, Renew. Sustain. Energy Rev. 2016, 56, 436–453. [Google Scholar] [CrossRef]
- P. Sakiewicz, K. Piotrowski, S. Kalisz, Neural network prediction of parameters of biomass ashes, reused within the circular economy frame, Renew. Energy. 2020, 162, 743–753. [Google Scholar] [CrossRef]
- Tu, W. Tsai, C., Hong, W. Lin, Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization, Energies. 2022, 15, 6624. [Google Scholar]
- M. Sridharan, Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters, Ann. Data Sci. Data Sci. ( 2021. [CrossRef]
- G. Kumar, H. Malik, Generalized Regression Neural Network Based Wind Speed Prediction Model for Western Region of India, Procedia Comput. Sci. 2016, 93, 26–32. [Google Scholar] [CrossRef]
- G. Bin Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: Theory and applications, Neurocomputing. 2006, 70, 489–501. [CrossRef]
- Y. Feng, W. Hao, H. Li, N. Cui, D. Gong, L. Gao, Machine learning models to quantify and map daily global solar radiation and photovoltaic power, Renew. Sustain. Energy Rev. 2020, 118, 109393. [Google Scholar] [CrossRef]
- S. Shamshirband, K. Mohammadi, P.L. Yee, D. Petković, A. Mostafaeipour, A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation, Renew. Sustain. Energy Rev. 2015, 52, 1031–1042. [Google Scholar] [CrossRef]
- Z. Li, L. Ye, Y. Zhao, X. Song, J. Teng, J. Jin, Short-term wind power prediction based on extreme learning machine with error correction, Prot. Control Mod. Power Syst. 2016, 1, 4–11. [Google Scholar] [CrossRef]
- M. Hou, T. Zhang, F. Weng, M. Ali, N. Al-Ansari, Z.M. Yaseen, Global solar radiation prediction using hybrid online sequential extreme learning machine model, Energies. 2018, 11, 3415. [CrossRef]
- N. Li, F. He, W. Ma, Wind power prediction based on extreme learning machine with kernel mean p-power error loss, Energies. 2019, 12, 673. [CrossRef]
- M. Zounemat-Kermani, O. Batelaan, M. Fadaee, R. Hinkelmann, Ensemble machine learning paradigms in hydrology: A review, J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- S. K. Gunturi, D. Sarkar, Ensemble machine learning models for the detection of energy theft, Electr. Power Syst. Res. 2021, 192, 106904. [Google Scholar] [CrossRef]
- B. A. Tama, S. Lim, Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation, Comput. Sci. Rev. 2021, 39, 100357. [Google Scholar] [CrossRef]
- Dogan, D. Birant, Machine learning and data mining in manufacturing, Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Y. Ren, P.N. Suganthan, N. Srikanth, Ensemble methods for wind and solar power forecasting - A state-of-the-art review, Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- J. S. Chou, C.F. Tsai, A.D. Pham, Y.H. Lu, Machine learning in concrete strength simulations: Multi-nation data analytics, Constr. Build. Mater. 2014, 73, 771–780. [Google Scholar] [CrossRef]
- J.D. de Guia;, R.S.C. II;, H.A. Calinao;, R.R. Tobias;, E.P. Dadios;, A.A. Bandala, Solar Irradiance Prediction Based on Weather Patterns Using Bagging-Based Ensemble Learners with Principal Component Analysis, in: 2020 IEEE 8th R10 Humanit. Technol. Conf., Kuching, Malaysia, 2020: pp. 1–6.
- P. Kumari, D. Toshniwal, Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance, J. Clean. Prod. 2021, 279, 123285. [Google Scholar] [CrossRef]
- M. F. Rami Al-Hajj, Ali Assi, Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study, J. Sol. Energy Eng. 143 (664) 051003. [CrossRef]
- M. W. Akram, G. Li, Y. Jin, X. Chen, C. Zhu, A. Ahmad, Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning, Sol. Energy. 2020, 198, 175–186. [Google Scholar] [CrossRef]
- K. Weiss, T.M. K. Weiss, T.M. Khoshgoftaar, D.D. Wang, A survey of transfer learning, Springer International Publishing, 2016. [CrossRef]
- W. Chen, Y. Qiu, Y. Feng, Y. Li, A. Kusiak, Diagnosis of wind turbine faults with transfer learning algorithms, Renew. Energy. 2021, 163, 2053–2067. [Google Scholar] [CrossRef]
- E. Sarmas, N. Dimitropoulos, V. Marinakis, Z. Mylona, H. Doukas, Transfer learning strategies for solar power forecasting under data scarcity, Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Q. Hu, R. Zhang, Y. Zhou, Transfer learning for short-term wind speed prediction with deep neural networks, Renew. Energy. 2016, 85, 83–95. [Google Scholar] [CrossRef]
- S. Zhang, Y. Chen, J. Xiao, W. Zhang, R. Feng, Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism, Renew. Energy. 2021, 174, 688–704. [Google Scholar] [CrossRef]
- G. . Mbah, N.. Amulu, M.. Onyiah, Effects of Process Parameters on the Yield of oil from Castor Seed, Am. J. Eng. Res. 2014, 03, 179–186. [Google Scholar]
- A. T. Eseye, J. Zhang, D. Zheng, Short-term Photovoltaic Solar Power Forecasting Using a Hybrid Wavelet-PSO-SVM Model Based on SCADA and Meteorological Information, Renew. Energy. 2018, 118, 357–367. [Google Scholar] [CrossRef]
- H. H.H. Aly, An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting, Sustain. Energy Technol. Assessments. 2020, 41, 100802. [Google Scholar] [CrossRef]
- G. N. Kariniotakis, G.S. Stavrakakis, E.F. Nogaret, Wind power forecasting using advanced neural networks models, IEEE Trans. Energy Convers. 1996, 11, 762–767. [Google Scholar] [CrossRef]
- G. Li, H. Wang, S. Zhang, J. Xin, H. Liu, Recurrent neural networks based photovoltaic power forecasting approach, Energies. 2019, 12, 1–17. [CrossRef]
- Kumar, H.D. Mathur, S. Bhanot, R.C. Bansal, Forecasting of solar and wind power using LSTM RNN for load frequency control in isolated microgrid, Int. J. Model. Simul. 2021, 41, 311–323. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
