Zhu, A.; Chiba, S.; Shimizu, Y.; Kunitake, K.; Okuno, Y.; Aoki, Y.; Yokota, T. Ensemble-Learning and Feature Selection Techniques for Enhanced Antisense Oligonucleotide Efficacy Prediction in Exon Skipping. Pharmaceutics2023, 15, 1808.
Zhu, A.; Chiba, S.; Shimizu, Y.; Kunitake, K.; Okuno, Y.; Aoki, Y.; Yokota, T. Ensemble-Learning and Feature Selection Techniques for Enhanced Antisense Oligonucleotide Efficacy Prediction in Exon Skipping. Pharmaceutics 2023, 15, 1808.
Zhu, A.; Chiba, S.; Shimizu, Y.; Kunitake, K.; Okuno, Y.; Aoki, Y.; Yokota, T. Ensemble-Learning and Feature Selection Techniques for Enhanced Antisense Oligonucleotide Efficacy Prediction in Exon Skipping. Pharmaceutics2023, 15, 1808.
Zhu, A.; Chiba, S.; Shimizu, Y.; Kunitake, K.; Okuno, Y.; Aoki, Y.; Yokota, T. Ensemble-Learning and Feature Selection Techniques for Enhanced Antisense Oligonucleotide Efficacy Prediction in Exon Skipping. Pharmaceutics 2023, 15, 1808.
Abstract
Antisense oligonucleotide (ASO)-mediated exon skipping has become a valuable tool for investigating gene function and developing gene therapy. Machine learning-based computational methods such as eSkip-Finder have been developed to predict the efficacy of ASOs via exon skipping. However, these methods are computationally demanding, and the accuracy of predictions remains suboptimal. In this study, we propose a new approach to reduce computational burden and improve prediction performance by using feature selection within machine learning algorithms and ensemble learning techniques. We evaluated our approach using a dataset of experimentally validated exon skipping events, dividing it into training and testing sets. Our results demonstrate that using a 3-way voting approach with random forest, gradient boosting, and XGBoost can significantly reduce computation time to under ten seconds while improving prediction performance, as measured by R2 for both 2’-O-methyl nucleotides (2OMe) and phosphorodiamidate morpholino oligomers (PMOs). Additionally, the feature importance ranking derived from our approach is in good agreement with previously published results. Our findings suggest that our approach has the potential to enhance the accuracy and efficiency of predicting ASO efficacy via exon skipping. It could also facilitate the development of novel therapeutic strategies. This study could contribute to the ongoing efforts to improve ASO design and optimize gene therapy approaches.
Computer Science and Mathematics, Artificial Intelligence and Machine Learning
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.