Submitted:
14 March 2023
Posted:
14 March 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Study Location
3. Materials and Methods
3.1. Image Processing and Data Analysis
3.2. PM2.5 Analysis
3.3. Risk Modeling using Hotspot Area
3.4. Regression Analysis
3.5. Raster Overlay Analysis
4. Results
4.1. Descriptive Analysis of PM2.5
4.2. Relationship Between PM2.5 and Land Use
4.3. Relationship Between PM2.5 and Climatic Variables
4.4. Hotspot Zoning
4.5. Affected Population due to PM2.5
5. Discussion
6. Conclusions
- About 41% of PM2.5 was increased within 19 years (2002-2021) in the study area
- The highest concentration of PM2.5 was found from 2012 to 2021
- The concentrations of PM2.5 were higher over barren lands, forests, croplands, and urban areas. About 64%, 62.7%, 57%, and 55% concentrations were increased over barren lands, forests, cropland, and urban areas, respectively, from 2002-2021.
- The highest concentration level of PM2.5 (84 mg m-3) was found in urban land in 2021.
- The regression analysis has shown that air pressure (r2= - 0.26), evaporation (r2= - 0.01), humidity (r2= - 0.22), rainfall (r2= - 0.20), and water vapor (r2= - 0.03) were negatively correlated with PM2.5.
- On the other hand, air temperature (r2= 0.24, ground heat (r2= 0.60, Figure 5d), and wind speed (r2= 0.34) were positively correlated with PM2.5.
- More than 60 Upazilas were found to be the most polluted areas, where 1,948,029 populations (ages 0-5), 485,407 (ages 50-69), and a total population of 11,260,162 were in the high-risk/hotspot zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P. J.; Fuller, R.; Acosta, N. J. R.; Adeyi, O.; Arnold, R.; Basu, N. (Nil); Baldé, A. B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J. I.; Breysse, P. N.; Chiles, T.; Mahidol, C.; Coll-Seck, A. M.; Cropper, M. L.; Fobil, J.; Fuster, V.; Greenstone, M.; Haines, A.; Hanrahan, D.; Hunter, D.; Khare, M.; Krupnick, A.; Lanphear, B.; Lohani, B.; Martin, K.; Mathiasen, K. V.; McTeer, M. A.; Murray, C. J. L.; Ndahimananjara, J. D.; Perera, F.; Potočnik, J.; Preker, A. S.; Ramesh, J.; Rockström, J.; Salinas, C.; Samson, L. D.; Sandilya, K.; Sly, P. D.; Smith, K. R.; Steiner, A.; Stewart, R. B.; Suk, W. A.; van Schayck, O. C. P.; Yadama, G. N.; Yumkella, K.; Zhong, M. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [CrossRef]
- WHO. WHO Ambient (Outdoor) Air Quality Database Summary Results, Update 2018. 2018, No. April, 10.
- Li, C.; Huang, Y.; Guo, H.; Wu, G.; Wang, Y.; Li, W.; Cui, L. The Concentrations and Removal Effects of PM10 and PM2.5 on a Wetland in Beijing. Sustain. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- Bayat, R.; Ashrafi, K.; Shafiepour Motlagh, M.; Hassanvand, M.S.; Daroudi, R.; Fink, G.; Künzli, N. Health Impact and Related Cost of Ambient Air Pollution in Tehran. Environ. Res. 2019, 176. [Google Scholar] [CrossRef] [PubMed]
- Nasari, M. M.; Szyszkowicz, M.; Chen, H.; Crouse, D.; Turner, M.C.; Jerrett, M.; Pope, C.A.; Hubbell, B.; Fann, N.; Cohen, A.; Gapstur, S.M.; Diver, W.R.; Stieb, D.; Forouzanfar, M.H.; Kim, S.Y.; Olives, C.; Krewski, D.; Burnett, R.T. A Class of Non-Linear Exposure-Response Models Suitable for Health Impact Assessment Applicable to Large Cohort Studies of Ambient Air Pollution. Air Qual. Atmos. Heal. 2016, 9, 961–972. [Google Scholar] [CrossRef]
- HEI. Systematic Review and Meta-Analysis of Selected Health Effects of Long-Term Exposure to Traffic-Related Air Pollution; Health Effects Institute: Boston, 2022. https://www.healtheffects.org/system/files/hei-special-report-23_4.pdf.
- Begum, B. A.; Hopke, P. K. Ambient Air Quality in Dhaka Bangladesh over Two Decades: Impacts of Policy on Air Quality. Aerosol Air Qual. Res. 2018, 18, 1910–1920. [Google Scholar] [CrossRef]
- Tusher, T. R.; Ashraf, Z.; Akter, S. Health Effects of Brick Kiln Operations: A Study on Largest Brick Kiln Cluster in Bangladesh. South East Asia J. Public Heal. 2019, 8, 32–36. [Google Scholar] [CrossRef]
- Zaman, S. U.; Pavel, M. R. S.; Joy, K. S.; Jeba, F.; Islam, M. S.; Paul, S.; Bari, M. A.; Salam, A. Spatial and Temporal Variation of Aerosol Optical Depths over Six Major Cities in Bangladesh. Atmos. Res. 2021, 262, 105803. [Google Scholar] [CrossRef]
- Nawar, N.; Sorker, R.; Chowdhury, F. J.; Mostafizur Rahman, M. Present Status and Historical Changes of Urban Green Space in Dhaka City, Bangladesh: A Remote Sensing Driven Approach. Environ. Challenges 2022, 6, 100425. [Google Scholar] [CrossRef]
- Nayeem, R.A.A.; Hossain, M.S.; Majumder, A.K. PM2.5 Concentration and Meteorological Characteristics in Dhaka, Bangladesh. Bangladesh J. Sci. Ind. Res. 2020, 55, 89–98. [Google Scholar] [CrossRef]
- Salam, A.; Hossain, T.; Siddique, M.N.A.; Shafiqul Alam, A.M. Characteristics of Atmospheric Trace Gases, Particulate Matter, and Heavy Metal Pollution in Dhaka, Bangladesh. Air Qual. Atmos. Heal. 2008, 1, 101–109. [Google Scholar] [CrossRef]
- Randall, S.; Sivertsen, B.; Ahammad, S. S.; Cruz, N. Dela; Dam, V. T. Emissions Inventory for Dhaka and Chittagong of Pollutants PM10, PM2. 5, NOx, SOx, and CO; 2015. http://bapman.nilu.no/LinkClick.aspx?fileticket=Wq46eRdToUA%3D&tabid=3331&mid=7822&language=en-US.
- Motalib, M.A.; Lasco, R.D. Assessing Air Quality in Dhaka City. Int. J. Sci. Res. 2015, 4, 1908–1912. [Google Scholar] [CrossRef]
- Rahman, M. S.; Kumar, P.; Ullah, M.; Jolly, Y. N.; Akhter, S.; Kabir, J.; Begum, B. A.; Salam, A. Elemental Analysis in Surface Soil and Dust of Roadside Academic Institutions in Dhaka City, Bangladesh and Their Impact on Human Health; Environmental Chemistry and Ecotoxicology, 2021; Vol. 3. [CrossRef]
- Liang, C. S.; Duan, F. K.; He, K.B.; Ma, Y. L. Review on Recent Progress in Observations, Source Identifications and Countermeasures of PM2.5. Environ. Int. 2016, 86, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. P.; Grinshpun, S. A.; Asbach, C.; Tsai, C. J. Overview of the Special Issue “Selected Papers from the 2014 International Aerosol Conference”. Aerosol Air Qual. Res. 2015, 15, 2185–2189. [Google Scholar] [CrossRef]
- Rana, M. M.; Mahmud, M.; Khan, M. H.; Sivertsen, B.; Sulaiman, N. Investigating Incursion of Transboundary Pollution into the Atmosphere of Dhaka, Bangladesh. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Pavel, M. R. S.; Zaman, S. U.; Jeba, F.; Islam, M. S.; Salam, A. Long-Term (2003–2019) Air Quality, Climate Variables, and Human Health Consequences in Dhaka, Bangladesh. Front. Sustain. Cities 2021, 3. [Google Scholar] [CrossRef]
- WHO. Air Pollution. World Health Organization. https://www.who.int/health-topics/air-pollution#tab=tab_1.
- Van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; ISLAM, M. D. A.; Marzia, S.; Hiya, H. J. Atmospheric Content of Particulate Matter PM2.5 in Gazipur and Mymensingh City Corporation Area of Bangladesh. Int. J. Res. Environ. Sci. 2020, 6, 21–29. [Google Scholar] [CrossRef]
- Kulsum, U.; Moniruzzaman, M. Quantifying the Relationship of Vegetation Cover and Air Pollution : A Spatiotemporal Analysis of PM2. 5 and NDVI in Greater Dhaka, Bangladesh. Jagannath Univ. J. Sci. 2021, 7, 54–63. [Google Scholar]
- Lu, D.; Xu, J.; Yue, W.; Mao, W.; Yang, D.; Wang, J. Response of PM2.5 Pollution to Land Use in China. J. Clean. Prod. 2020, 244. [Google Scholar] [CrossRef]
- Faisal, A.A.; Kafy, A.A.; Abdul Fattah, M.; Amir Jahir, D.M.; Al Rakib, A.; Rahaman, Z.A.; Ferdousi, J.; Huang, X. Assessment of Temporal Shifting of PM2.5, Lockdown Effect, and Influences of Seasonal Meteorological Factors over the Fastest-Growing Megacity, Dhaka. Spat. Inf. Res. 2022, 30, 441–453. [Google Scholar] [CrossRef]
- Afrin, S.; Islam, M. M.; Ahmed, T. A Meteorology Based Particulate Matter Prediction Model for Megacity Dhaka. Aerosol Air Qual. Res. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- WHO. Air Pollution. World Health Organization. https://www.who.int/health-topics/air-pollution#tab=tab_1.
- Islam, N.; Toha, T. R.; Islam, M. M.; Ahmed, T. The Association between Particulate Matter Concentration and Meteorological Parameters in Dhaka, Bangladesh. Meteorol. Atmos. Phys. 2022, 134, 1–13. [Google Scholar] [CrossRef]
- Hossain, M. Z.; Nikam, B. R.; Gupta, P. K.; Srivastav, S. K. Estimating Groundwater Resource and Understanding Recharge Processes in the Rapidly Urbanizing Dhaka City, Bangladesh. Groundw. Sustain. Dev. 2021, 12, 100514. [Google Scholar] [CrossRef]
- Razib; Nayeem, A.A.; Hossain, M. S.; Majumder, A. K. PM2.5 Concentration and Meteorological Characteristics in Dhaka, Bangladesh. Bangladesh J. Sci. Ind. Res. 2020, 55, 89–98. [Google Scholar] [CrossRef]
- Hassan, M. M.; Juhász, L.; Southworth, J. Mapping Time-Space Brickfield Development Dynamics in Peri-Urban Area of Dhaka, Bangladesh Mohammad. Int. J. Geo-Information 2019, 8, 1–27. [Google Scholar] [CrossRef]
- Islam, M. Chemical Speciation of Particulate Matter Pollution in Urban Dhaka City. Bangladesh Environ. 2000, 2000, 51–58. [Google Scholar]
- WorldPop. Open Spatial Demographic Data and Research.
- Chew, B. N.; Campbell, J. R.; Hyer, E. J.; Salinas, S. V.; Reid, J. S.; Welton, E. J.; Holben, B. N.; Liew, S. C. Relationship between Aerosol Optical Depth and Particulate Matter over Singapore: Effects of Aerosol Vertical Distributions. Aerosol Air Qual. Res. 2016, 16, 2818–2830. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Hsu, N. C.; Kahn, R. A.; Levy, R. C.; Lyapustin, A.; Sayer, A. M.; Winker, D. M. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Rafsan, R. A.; Ishmam, Z. S.; Ahammed, T. Predicting Hospital Admissions in Dhaka Due to Chest Diseases Using Multiple Linear Regression And Feed Forward. In Proceedings of the 5th International Conference on Advances in Civil Engineering (ICACE 2020); Imam, R. and P., Ed.; 2021; pp 4–6.
- Kayes, I.; Shahriar, S. A.; Hasan, K.; Akhter, M.; Kabir, M. M.; Salam, M. A. The Relationships between Meteorological Parameters and Air Pollutants in an Urban Environment. Glob. J. Environ. Sci. Manag. 2019, 5, 265–278. [Google Scholar] [CrossRef]
- Lin, C. A.; Chen, Y. C.; Liu, C. Y.; Chen, W. T.; Seinfeld, J. H.; Chou, C. C. K. Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens. 2019, 11, 1–21. [Google Scholar] [CrossRef]
- Mukherjee, A.; Brown, S. G.; McCarthy, M. C.; Pavlovic, N. R.; Stanton, L. G.; Snyder, J. L.; D’Andrea, S.; Hafner, H. R. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors (Switzerland) 2019, 19, 4701. [Google Scholar] [CrossRef]
- Iqbal, A.; Afroze, S.; Rahman, M. M. Vehicular PM Emissions and Urban Public Health Sustainability: A Probabilistic Analysis for Dhaka City. Sustainability 2020, 12, 1–18. [Google Scholar] [CrossRef]
- Songchitruksa, P.; Zeng, X. Getis-Ord Spatial Statistics to Identify Hot Spots by Using Incident Management Data. Transp. Res. Rec. 2010, 2165, 42–51. [Google Scholar] [CrossRef]
- Guo, W.; Wang, S.; Tiwari, G.; Johnson, J. A.; Tang, J. Temperature and Moisture Dependent Dielectric Properties of Legume Flours Associated with Dielectric Heating. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2009, ASABE 2009 2009, 3, 1599–1608. [Google Scholar] [CrossRef]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression; Springer Berlin Heidelberg: London, UK, 2013. [Google Scholar] [CrossRef]
- Imran, M.; Baten, M.; Nahar, B.; Morshed, N. Carbon Dioxide Emission from Brickfields around Bangladesh. Int. J. Agric. Res. Innov. Technol. 2015, 4, 70–75. [Google Scholar] [CrossRef]
- Zhang, Z. Energy Efficiency and Environmental Pollution of Brickmaking in China. Energy 1997, 22, 33–42. [Google Scholar] [CrossRef]
- Begum, B. A.; Hopke, P. K. Identification of Sources from Chemical Characterization of Fine Particulate Matter and Assessment of Ambient Air Quality in Dhaka, Bangladesh. Aerosol Air Qual. Res. 2019, 19, 118–128. [Google Scholar] [CrossRef]
- Begum, B. A.; Nasiruddin, M.; Randal, S.; Sivertsen, B.; Hopke, P. K. Identification and Apportionment of Sources from Air Particulate Matter at Urban Environments in Bangladesh. Br. J. Appl. Sci. Technol. 2014, 4, 3930–3955. [Google Scholar] [CrossRef]
- Gautam, S.; Yadav, A.; Tsai, C. J.; Kumar, P. A Review on Recent Progress in Observations, Sources, Classification and Regulations of PM2.5 in Asian Environments. Environ. Sci. Pollut. Res. 2016, 23, 21165–21175. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, Y.; Guo, H.; Wu, G.; Wang, Y.; Li, W.; Cui, L. The Concentrations and Removal Effects of PM10 and PM2.5 on a Wetland in Beijing. Sustain. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- Tiwari, S.; Hopke, P. K.; Pipal, A. S.; Srivastava, A. K.; Bisht, D. S.; Tiwari, S.; Singh, A. K.; Soni, V. K.; Attri, S. D. Intra-Urban Variability of Particulate Matter (PM2.5 and PM10) and Its Relationship with Optical Properties of Aerosols over Delhi, India. Atmos. Res. 2015, 166, 223–232. [Google Scholar] [CrossRef]
- Mkoma, S. L.; Chi, X.; Maenhaut, W. Characteristics of Carbonaceous Aerosols in Ambient PM10 and PM2.5 Particles in Dar Es Salaam, Tanzania. Sci. Total Environ. 2010, 408, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Arfaeinia, H.; Hashemi, S. E.; Alamolhoda, A. A.; Kermani, M. Evaluation of Organic Carbon, Elemental Carbon, and Water Soluble Organic Carbon Concentration in PM 2.5 in the Ambient Air of Sina Hospital District, Tehran, Iran. J Adv Env. Heal. Res 2016, 4, 95–101. [Google Scholar]
- Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M. Modelling Street Level PM10 Concentrations across Europe: Source Apportionment and Possible Futures. Atmos. Chem. Phys. 2015, 15, 1539–1553. [Google Scholar] [CrossRef]
- Rajput, P.; Sarin, M.; Kundu, S. S. Atmospheric Particulate Matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: Abundances and Chemical Characteristics. Atmos. Pollut. Res. 2013, 4, 214–221. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W.; Liang, Z. Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Hou, W.; Chen, J.; Chen, C.; Pan, X. Spatiotemporal Changes in PM2.5 and Their Relationships with Land-Use and People in Hangzhou. Int. J. Environ. Res. Public Health 2018, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tai, A. P. K.; Mickley, L. J.; Jacob, D. J. Correlations between Fine Particulate Matter (PM2.5) and Meteorological Variables in the United States: Implications for the Sensitivity of PM2.5 to Climate Change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Lawal, O.; Asimiea, A. Spatial Modelling of Population at Risk and PM2.5 Exposure Index: A Case Study of Nigeria. Ethiop. J. Environ. Stud. Manag. 2015, 8, 69. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhou, J.; Ban, J.; Li, T. Estimation of PM 2·5 -Associated Disease Burden in China in 2020 and 2030 Using Population and Air Quality Scenarios: A Modelling Study. Lancet Planet. Heal. 2019, 3, e71–e80. [Google Scholar] [CrossRef]
- Bhalla, N.; O’Boyle, J.; Haun, D. Who Is Responsible for Delhi Air Pollution? Indian Newspapers’ Framing of Causes and Solutions. Int. J. Commun. 2019, 13, 41–64. [Google Scholar]







| Theme | Name | Unit | Source | Time of Data collection |
|---|---|---|---|---|
| Independent variables (Air pollutants) | Air Pressure | hPa | https://disc.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary | 2021 |
| Air Temperature |
k | https://disc.gsfc.nasa.gov/datasets/NCALDAS_NOAH0125_D_2.0/summary | 2021 | |
| Evaporation | kg m-2 | https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary | 2021 | |
| Ground Heat | W m-2 | https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_2.0/summary | 2021 | |
| Humidity | kg m-2 | https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary | 2021 | |
| Rainfall | mm/hr | https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary | 2021 | |
| Water Vapor | kg m-2 | https://disc.gsfc.nasa.gov/datasets/AIRX3STM_7.0/summary | 2021 | |
| Wind Speed | m s-1 | https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary | 2021 | |
| Land Use | Class | http://www.globallandcover.com/ | Nov 2022 | |
| Dependent variables | PM2.5 | mg m-3 |
https://ads.atmosphere.copernicus.eu/ https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary |
2002-2021 |
| PM2.5 (Annual) | 0-5 age | 50-69 age | Total Population |
|---|---|---|---|
| High spot area (65 μg/m3) | 1,948,029 | 485,407 | 11,260,162 |
| Medium spot area (50 μg/m3) | 1,231,066 | 370,124 | 5,720,467 |
| Low spot area (45 μg/m3) | 523,128 | 181,445 | 2,343,643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
