Version 1
: Received: 6 March 2023 / Approved: 6 March 2023 / Online: 6 March 2023 (14:05:35 CET)
How to cite:
Mu, H.; Smith, D.; Katkus, T.; Gailevicius, D.; Malinauskas, M.; Nishijima, Y.; Stoddart, P.R.; Ruan, D.; Ryu, M.; Morikawa, J.; Vasiliev, T.A.; Lozovski, V.; Moraru, D.; Ng, S.H.; Juodkazis, S. Integrated Polarisation Control in Microlens Arrays: Performance at Visible-Ir Spectral Ranges. Preprints2023, 2023030106. https://doi.org/10.20944/preprints202303.0106.v1.
Mu, H.; Smith, D.; Katkus, T.; Gailevicius, D.; Malinauskas, M.; Nishijima, Y.; Stoddart, P.R.; Ruan, D.; Ryu, M.; Morikawa, J.; Vasiliev, T.A.; Lozovski, V.; Moraru, D.; Ng, S.H.; Juodkazis, S. Integrated Polarisation Control in Microlens Arrays: Performance at Visible-Ir Spectral Ranges. Preprints 2023, 2023030106. https://doi.org/10.20944/preprints202303.0106.v1.
Cite as:
Mu, H.; Smith, D.; Katkus, T.; Gailevicius, D.; Malinauskas, M.; Nishijima, Y.; Stoddart, P.R.; Ruan, D.; Ryu, M.; Morikawa, J.; Vasiliev, T.A.; Lozovski, V.; Moraru, D.; Ng, S.H.; Juodkazis, S. Integrated Polarisation Control in Microlens Arrays: Performance at Visible-Ir Spectral Ranges. Preprints2023, 2023030106. https://doi.org/10.20944/preprints202303.0106.v1.
Mu, H.; Smith, D.; Katkus, T.; Gailevicius, D.; Malinauskas, M.; Nishijima, Y.; Stoddart, P.R.; Ruan, D.; Ryu, M.; Morikawa, J.; Vasiliev, T.A.; Lozovski, V.; Moraru, D.; Ng, S.H.; Juodkazis, S. Integrated Polarisation Control in Microlens Arrays: Performance at Visible-Ir Spectral Ranges. Preprints 2023, 2023030106. https://doi.org/10.20944/preprints202303.0106.v1.
Abstract
Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated by femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼ 50% transmittance at chemical fingerprinting spectral region 2-5 μm wavelengths since MLAs were only ∼ 10 μm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 μm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout visible-IR spectral window and numerical modeling was used to simulate their performance. Good match between experimental results of MLA focusing and simulations was achieved.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.