Submitted:
24 February 2023
Posted:
28 February 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Description of Some Common Fruit by-Products: Overview
3.1. Banana (Musa spp.) by-Products
3.2. Apple (Malus Domestica Borkh.) by-Products
3.3. Mango (Mangifera Indica L.) by-Products
3.4. Citrus (Citrus Rutaceae L.) by-Products
3.5. Grape (Vitis Vinifera) by-Products
3.6. Avocado (Persea Americana) by-Products
3.7. Pineapple (Ananas Comosus L.) by-Products
4. Nutritional Potentials of Fruit by-Products
4.1. Banana Fruit
4.2. Apple Fruit
| By-product | Phosphorus | Potassium | Calcium | Sodium | Magnesium | Iron | Zinc | Copper | Manganese | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| Apple pomace | 64.9–70.4 | 398.4–880.2 | 55.6–92.7 | 185.3 | 18.5–333.5 | 2.9–3.5 | 1.4 | 0.1 | 0.4–0.8 | [51] |
| Mango seed kernel | 20 | 158 | 10.21 | 2.7 | 22.4 | 1-12 | 1.1-5.6 | 8.6 | 0.04 | [63] |
| Banana peel | - | 4599.7 | 2011.5 | 32.5 | 95.1 | 2.5 | 2.3 | 12.4 | 5.7 |
[65] |
| Avocado peel | - | 899.8 | 679.3 | 21.1 | 46.9 | 2.3 | 1.6 | 14.5 | 1.4 | |
| Avocado seed | - | 1202.6 | 434.9 | 39.4 | 55.8 | 3.7 | 1.8 | 16.7 | 1.5 | |
| Citrus peel | 366.84 | 8.75 | 515.78 | 274.77 | 5.39 | 9.06 | - | - | - | [67] |
| Pineapple peel | 1349.5 | 4236.2 | 9.8 | 107.6 | 1.6 | 0.8 | 4.7c | 8.2 | [65] | |
| Grape pomace | 193 | 4334 | 182 | 131 | - | - | - | - | - | [68] |
4.3. Mango Fruit
4.4. Citrus Fruit
4.5. Grapes
4.6. Avocado Fruits
4.7. Pineapple
| Vitamin (mg/100g) | Fruit by-products | |||||
|---|---|---|---|---|---|---|
| Citrus peel | Mango seed | Avocado seed | Pineapple stem | Grape pomace | Pineapple peel | |
| Vitamin B1 | 11.9 | 0.08 | 0.33 | - | - | - |
| Vitamin B2 | - | 0.03 | 0.29 | - | - | - |
| Vitamin B3 | 234.16 | - | 0.06 | - | - | - |
| Vitamin B6 |
286.63 | 0.19 | - | - | - | |
| Vitamin B9 | 1.36 | - | - | - | - | - |
| Vitamin B12 |
- | 0.12 | - | - | - | - |
| Vitamin C | 21.34 | 0.56 | 97.8 | 121.2 | 26.25 | 212.9 |
| Vitamin A | - | 15.27(IU) | 10.11(IU) |
- | - | - |
| Vitamin E | 4.45 | 1.3 | 0.12 | - | - | - |
| Vitamin K | - | 0.59 | - | - | - | - |
| References | [67] | [69] | [70] | [71] | [66] | [71] |
5. Current Knowledge on the Utilization of Fruit by-Products
5.1. Banana Fruit
5.2. Apple Fruit
5.3. Mango Fruit
| Bioactives | Sources | Bioactivity/preservative | References |
|---|---|---|---|
| Flavonols | Pomegranate peels, orange peels, tamarind seeds, mango peels | Antioxidants | [72] |
| Pectins | kiwifruit, pomegranate, apple and orange peels | Food additive, thickening agent | [73] |
| Amino acids and proteins |
Mandarin by-products, pineapple peels, papaya peels | Good source of protein | [74] |
| Polyphenols | Avocado seed | Antioxidant activity | [41] |
| Phenolic compounds | Banana peel | Antioxidant activity | [23] |
| Triterpenoids | Apple pomace | Anti-inflammatory, anti-microbial, | [26,75] |
| Limonoids | Citrus seed | Anti-inflammatory, anti-cancer, anti-bacteria, antioxidant activities | [76] |
| Phenolic acids, flavones, flavanones | Citrus peel and pulp | Antioxidant, anti-inflammatory, anti-cancer properties | [77] |
| Carbohydrates (pectin and pectin oligosaccharides) | Apple pomace | Dietary fibre, prebiotic, hypo cholesterolemic | [78] |
5.4. Citrus Fruit
5.5. Grapes
5.6. Avocado Fruit
5.7. Pineapple Fruit
| Fruit by-product | Uses in food industries | Reference |
|---|---|---|
| Apple pomace | Apple pomace used as a dietary fiber source in some baked foods, chicken meat-based sausages and yoghurt products | [94,95] |
| Apple pomace | Used as stabilizers for oil-water emulsions and have an antimicrobial activity | [96] |
| Apple seed | Addition of defatted apple seed powder into chewing gum enhanced phloridzin uptake | [97] |
| Avocado by-product | Avocado by-products can be used as antioxidants, antimicrobials, and food additives such as colorants, flavorings, and thickening agents | [15] |
| Avocado peel | Dried peels used in a functional beverage formulation (tea rich in antioxidants) | [98] |
| Avocado peel | Peel extract’s used to inhibit lipid peroxidation and to avoid oxidation of meat proteins | [99] |
| Avocado seed | Seed starch used for biodegradable polymers for drug delivery or food pack by-product | [100] |
| Seeds can act as functional ingredients in foods, considering their composition in total fiber (lignin, cellulose and hemicelluloses) | [101] |
|
| Banana peel | The flour obtained from unripe banana peels used for colon health effects due to its high resistant starch content and ripe peels is digestible due to the high content of starch and proteins | [46] |
| Banana peel | Banana peel jelly has antioxidant properties |
[102] |
| Citrus peel | Citrus peels used as a source of molasses, pectin, oil and limone | [103] |
| Citrus (pectin) | Citrus pectin is used as thickener, emulsifier and stabilizer in many foods (jams, jellies, and marmalades and other products) | |
| Citrus (pectin) | Pectin is a suitable polymeric matrix for edible films for active food pack by-product | [104] |
| Citrus essential oils | Citrus essential oils are GRAS; and are used as antimicrobials, antifungal and flavoring agents | [105] |
| Grape pomace | Meat and fish derivatives containing grape pomace powders shows improved sensory and physical properties | [106] |
| Grape (stems, seeds and skins) | Fiber from grape pomace used as functional ingredient in bakery products | [107] |
| Grape seed | Oil obtained from grape seed is rich in linoleic acid (60–70%), as well as in tocopherols, which hinder their oxidation | [108] |
| Mango peel | Mango peel powder used as source of antioxidant and dietary fiber in macaroni | [109] |
| Mango peel seed kernel | mango peels and seed kernels powders used as sources of phytochemicals in biscuit | [110] |
| Mango peel extract | Peel extracts used into gelatin-based films for active food pack by-product due to its free radical scavenging activity and improvements in film strength | [111] |
| Mango peel | Edible films made of mango peel showed good permeability and hydrophobicity properties | [112] |
| Pineapple peel | Pineapple peel is rich source of sugar that can be used as nutrients in fermentation processes | [113] |
| Pineapple core | Core can be used in pineapple juice concentrates, vinegar and wine production | [113] |
| Pineapple stem | Bromelain enzyme, extracted from the pineapple stem used as a meat tenderizer, a bread dough improver, a fruit anti-browning agent, a beer clarifier | [114] |
6. Prospective Impact of Fruit by-Products on Food and Nutrition Security
| Fruit by-product | Uses in Pharmaceutical industries | Reference |
|---|---|---|
| Guava leaf | Guava leaves contain a high level of antioxidants, phenolic compounds and immune-stimulatory agents | [115] |
| Apple phloridzin | It can inhibit lipid peroxidation and prevent bone loss, enhance memory and even inhibit cancer cell growth | [116,117,118] |
| Apple peel | Apple peel consumption improves metabolic alterations associated with a fat-rich diet and also slowed the atherogenesis development | [119] |
| Avocado peel extracts | Avocado peel extract has been proved to be used as inhibitors for the inflammation mediator nitric oxide by a possible reduction of free radicals during inflammation | [60] |
| Avocado peel and seed | Polyphenols from avocado peel and seed possess anti-cancer, anti-diabetic and anti-hypertensive effects | [41] |
| Banana peel | The bioactive compounds extracted from peel Antioxidant, anti-bacterial, anti-fungal activity, reducing blood sugar, lowering cholesterol, anti-angiogenic activity, neuro-protective effect | [23,110] |
| Banana Peel | Banana peels are used to synthesize bio-inspired silver nano-particles which used as antimicrobials to pathogenic fungi and some bacterial species | [79] |
| Citrus pulp and seed | D-limonene was shown to exhibit a therapeutic effect on lung cancer mice and breast cancer in mice and rat | [120,121] |
| Grape byproduct | Grape by-products used in pharmaceuticals due to their antibacterial, anti-viral, and anti-fungal properties. they also showed anti-inflammatory actions | [58,122] |
| Grapes-seed oil |
Grapes seed oil evaluated in various in vitro and in vivo tests showed anti-microbial, anti-inflammatory, cardio-protective and anticancer properties | [123] |
| Mango seed and peel | Seed and peel extracts were shown to have anti-inflammatory and anti-oxidative properties on vivo studies related to obesity, diabetes, CVD and skin cancer | [124] |
| Mango pectin | Pectin extracted from mango by-products used for prevention and reduction of carcinogenesis | [125] |
| Mango seed/peel | Mangiferin extracted and isolated from the seed/peel shows strong anti-oxidant, anti-tumor, anti-bacterial, and immuno-modulatory effects | [126] |
| Peach kernel | Peach kernels phenols, carotenoids and cyanogenic glycosides, have Antidiabetic, antioxidative, and anti-aging properties | [127] |
| Fruit by-products | Uses in biotechnology | Reference |
|---|---|---|
| Apple pomace | Apple pomace used as a substrate for value-added products, such as enzymes, aroma compounds and organic acids | [128] |
| Avocado peel | Carbonaceous material produced from avocado peel is used as alternative adsorbent for dyes removal | [129] |
| Banana peel | Banana peels can be used as a substrates by solid state fermentation (SSF) to produce enzymes and organic acids | [130] |
| Banana peel | Organic acids (citric, lactic and acetic acid) were successfully produced from banana peels with Aspergillus niger or Yarrowia lipolytica | [131] |
| Orange peel | Orange peels as a substrate to produce pectinolytic, cellulolytic and xylanolytic enzymes by (SSF) using fungi from the genera Aspergillus, Fusarium, and Penicillium | [55] |
| Grape by-products | Grape by-products have been used as a substrates for the production of hydrolytic enzymes such as cellulase and pectinase | [132] |
| Mango peel | Mango peels were used to produce lactic acid (up to 17.5g/L) and pectinase enzyme | [133] |
| Mango seed-kernel | Mango seed kernels were used to produce α-amylase with Fusarium soloni | [134] |
| Pineapple peel | Pineapple peel can be used as a substrate for methane, ethanol and hydrogen generation by S. cerevisiae and Enterobacter aerogenes | [8] |
| Pineapple peel | Pineapple peels have been anaerobically digested to yield biogas in the form of methane | [135] |
| Pineapple & orange peel | Bioethanol is produced from fruit peels of pineapple, orange and sweet lime using S. cerevisiae | [136] |
| Papaya seed | Papaya seeds are used as biosorbents to remove heavy metals such as lead and cadmium | [137] |
7. Summary and Research Need
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO Food and agriculture organization Data. 2016. Influencing food environments for healthy diets. In influencing food environments for healthy diets.
- FAO Food and agriculture organization Data. 2017. The state of food and agriculture. Available online: http://www.fao.org/faostat/en/#home (accessed on 10 January 2020).
- Godfray HC, J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: the challenge of feeding 9 billion people. Food Secur. 2010, 327, 1–8. [Google Scholar] [CrossRef]
- Agro Press and Tomra Sorting Solutions Food. 2019. It is Time to End Food Waste. Retrivedfrom:https://www.tomra.com/en/sorting/food/why/food-waste/, Accessed on 16 January, 2021.
- FAO Food and agriculture organization Data. 2015. Global initiative on food loss and food waste reduction. United Nations, 1–8.
- FAO Food and agriculture organization Data. 2011. Global food losses and food waste – Extent, causes and prevention. In Food and Agriculture Organization of the United Nations.
- Gupta, K.; Joshi, V.K. Fermentative utilization of waste from food processing industry In: Postharvest Technology of Fruits and Vegetables: Handling Processing Fermentation and Waste Mangement. 2000, Vol. 2 Verma L R and Joshi VK (Eds). Indus Pub Co, New Delhi.
- Choonut, A.; Saejong, M.; Sangkharak, K. The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia. 2014, 52, 242–249. [Google Scholar] [CrossRef]
- Parni, B.; Verma, Y. Biochemical properties in peel, pulp and seeds of Carica papaya. Plant Arch. 2014, 14, 565–568. [Google Scholar]
- Mitra, S.K.; Pathak, P.K.; Lembisana, H.D.; Chakraborty, I. Utilization of seed and peel of mango fruit. Acta Hortic. 2013, 992, 593–596. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manage. 2018, 77, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Joshi, V.K. Fermentative utilization of waste from food processing industry In: Postharvest Technology of Fruits and Vegetables: Handling Processing Fermentation and Waste Mangement. 2000, Vol. 2 Verma L R and Joshi VK (Eds). Indus Pub Co, New Delhi.
- Sharma, K.; Mahato, N.; HwanCho, M.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutr. 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Narayan, P.; SM, S.; Lata, K.; Singh, U.; Kumar, V.; Rajender, S.S.; PSingh, S. Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour. Technol. 2016, 216, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products – A Source of Valuable Active Principles. A Short Review. Front. bioeng. biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Fang, L.; Zheng, Z.; Zhi, D.; Wang, S.; Zhao, H. Anticancer Activities of Citrus Peel Polymethoxy flavones Related to Angiogenesis and Others. Biomed Res. Int. 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aruna, S.; Suneetha, V. Studies on biochemical analysis and antioxidant property in culinary fruit peels collected from Kannamagalam town of Vellore districts. Der Pharm. Lett. 2016, 8, 381–388. [Google Scholar]
- Nguyen NM, P.; Le, T.T.; Vissenaekens, H.; Gonzales, G.B.; Van Camp, J.; Smagghe, G.; Raes, K. In vitro antioxidant activity and phenolic profiles of tropical fruit by-products. Int. J. Food Sci. Technol. 2019, 54, 1169–1178. [Google Scholar] [CrossRef]
- MINAGRIC,. Post Harvest Profile of Banana: 2015. Government of India Ministry of Agriculture (Department Of Agriculture & Cooperation), Directorate of Marketing & Inspection, Branch Head Office.
- Mohapatra, D.; Mishra, S.; Sutar, N. Banana and its by-product utilization: An overview. J. Scient. Ind. Res. 2010, 69, 323–329. [Google Scholar]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods. 2018, 40(July2017), 238–248. [Google Scholar] [CrossRef]
- Sinha; Nirmal, K. Apples and pears: production, physicochemical and nutritional quality, and major products. In Handbook of fruits and fruit processing. 2012, (pp. 365–383).
- Hesas, R.H.; Arami-Niya, A.; Daud WM, A.W.; JN Sahu, A. Preparation and characterization of activated carbon for separation of CO2. J. China Univ. Min. Technol. 2014, 43, 910–914. [Google Scholar]
- Barreira JC,, M.; Arraibi, A.A.; Ferreira IC,, F.R. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [CrossRef]
- VasanthaRupasinghe, H.P.; Wang, L.; Pitts, N.L.; Astatkie, T. Baking and sensory characteristics of muffins incorporated with apple skin powder. J. Food Qual. 2009, 32, 685–694. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L. ), “The King of Fruits”—An Overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E. Aguilar, C.N.Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Alvarez-Rivera, G.; Medina SJ, M.; delPilar Sánchez Camargo, A.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A. An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, photochemical profiling and anti-proliferative activity assessment. Food Res. Int. 2019, 126, 108616. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Mosaddik, A.; Gyawali, R.; Ahn, K.S.; Cho, S.K. Induction of apoptosis by ethanolic extract of mango peel and comparative analysis of the chemical constitutes of mango peel and flesh. Food Chem. 2012, 133, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.; Naidu, K.; Bhat, S.; Rao, U. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Solís-Fuentes, J.A.; Durán-de-Bazúa, M.C. Mango (Mangifera indica L.) seed and its fats. In V. Preedy, R. R. Watson, & V. B. Patel (Eds.), Nuts and Seeds in health and disease prevention. 2011, (pp. 741–748). San Diego: Academic Press. Chapter 88.
- Ledesma-Escobar, C.A.; Luque de Castro, M.D. Towards a comprehensive exploitation of citrus. Trends Food Sci. Technol. 2014, 39, 63–75. [Google Scholar] [CrossRef]
- Ferguson, U. Citrus fruits processing. In Horticultural Science. 1990; 117–118. [Google Scholar]
- Sharma, K.; Mahato, N.; Hwan Cho, M.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutr. 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Zema, D.A.; Calabrò, PS; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manage. 2018, 80, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: an approach that is increasingly reaching its maturity – a review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Beres, C.; Costa GN, S.; Cabezudo, I.; da Silva-James, N.K.; Teles AS, C.; Cruz AP, G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral LM, C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manage. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado MM, E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Yahia, E.M. The Contribution of Fruit and Vegetable Consumption to Human Health. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability. 2009, (pp. 3–51). [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT-Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Hemalatha, R.; Anbuselvi, S. Physicohemical constituents of pineapple pulp and waste. J. Chem. Pharm. Res. 2013, 5, 240–242. [Google Scholar]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Amini Khoozani, A.; Birch, J.; Bekhit AE, D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef]
- Happi Emaga, T.; Andrianaivo, R.H.; Wathelet, B.; Tchango, J.T.; Paquot, M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 2007, 103, 590–600. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Sobral PJ, D.A.; Menegalli, F.C. Isolation and characterization of cellulose nano-fibers from banana peels. Cellulose. 2014, 21, 417–432. [Google Scholar] [CrossRef]
- Lavelli, V.; Corti, S. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chem. 2011, 129, 1578–1583. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bio-production of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Jahurul MH, A.; Zaidul IS, M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini NA, N.; Sahena, F.; Mohd Omar, A.K. Mango (Mangifera indica L. ) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef]
- Sagar, A.; Singh, R. Biochemical estimation of nutritive parameters in waste seed kernel of Mango (Mangifera indica L.). Int. J. Agric. Res. Innov. Technol. 2016, 1, 113–115. [Google Scholar] [CrossRef]
- Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F.; Aftab, S. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci. Technol. 2016, 53, 102–112. [Google Scholar] [CrossRef]
- Mamma, D.; Kourtoglou, E.; Christakopoulos, P. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 2008, 99, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes:Present insights and future challenges. Molecules. 2020, 25, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Friedman, M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J. Agric. Food Chem. 2014, 62, 6025–6042. [Google Scholar] [CrossRef]
- Domínguez, M.P.; Araus, K.; Bonert, P.; Sánchez, F.; San Miguel, G.; Toledo, M. The Avocado and Its Waste: An Approach of Fuel Potential/Application. Environment, Energy and Climate Change II, 2014; 199–223. [Google Scholar]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto É, R.; Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE. 2018, 13, e0192577. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Chow, C.J.; Fang, Y.J. Preparation and physicochemical properties of fiber-rich fraction from pineapple peels as a potential ingredient. J. Food Drug Anal. 2011, 19, 318–323. [Google Scholar] [CrossRef]
- Roda, A.; Lambri, M. Food uses of pineapple waste and by-products: a review. Int. J. Food Sci. Technol. 2019, 54, 1009–1017. [Google Scholar] [CrossRef]
- Nzikou, J.M.; Kimbonguila, A.; Matos, L.; Loumouamou, B.; Pambou-Tobi NP, G.; Ndangui, C.B.; Abena, A.A.; Silou Th Scher, J.; Desobry, S. Extraction and characteristics of seed kernel oil from mango (Mangifera indica L.). Research J. of Environ Earth Sci. 2010, 2, 31–35. [Google Scholar]
- Noor, S.A.A.; Siti, N.M.; Mahmad, N.J. Chemical Composition, Antioxidant Activity and Functional Properties of Mango (Mangifera indica L. var Perlis Sunshine) Peel Flour (MPF). Int. J. Appl. Mech. 2015, 754, 1065–1070. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz AM, A.; Carioca JO, B.; Morais SM de Lima A de Martins, C.G.; Rodrigues, L.L. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L. ), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Ani, P.N.; Abel, H.C. Nutrient, phytochemical, and antinutrient composition of Citrus maxima fruit juice and peel extract. Food Sci. Nutr. 2018, 6, 653–658. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and Antimicrobial Properties of Wine Byproducts and Their Potential Uses in the Food Industry. J. Agric. Food Chem. 2014; 62, 12595–12602. [Google Scholar] [CrossRef]
- Fowomola, M.A. Some nutrients and antinutrients contents of mango (Magnifera indica L.) seed. Afr. J. Food Sci. 2010, 4, 472–476. [Google Scholar]
- Anthony, C.E.; Chinazum, O.; Okechukwu, C.A.; Uchendu, O.M. Vitamins composition and antioxidant properties in normal and monosodium glutamate-compromised rats’ serum of Persea americana (Avocado Pear) seed. Open Chem. 2017, 1, 19–24. [Google Scholar]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods. 2020, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Çam, M.; İçyer, N.C.; Erdoğan, F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Sci. Technol. 2014, 55, 117–123. [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- El-Safy, F.S.; Salem, R.H.; Abd El-Ghany, M.E. Chemical and nutritional evaluation of different seed flours as novel sources of protein. World J. Dairy Food Sci. 2012, 7, 59–65. [Google Scholar] [CrossRef]
- Huang, L.; Luo, H.; Li, Q.; Wang, D.; Zhang, J.; Hao, X.; Yang, X. Pentacyclictriterpene derivatives possessing polyhydroxyl ring A inhibit Gram-positive bacteria growth by regulating metabolism and virulence genes expression. Eur. J. Med. Chem. 2015, 95, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, S.; Lv, X.; Lu, J.; Ren, C.; Zeng, Z.; Zheng, L.; Zhou, X.; Fu, H.; Zhou, D. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int. J. Immunopharmacol. 2019, 75, 105768. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods. 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Luo, H.; Meng, K.; Wang, Y.; Liu, M.; Bai, Y.; Yao, B.; Tu, T. Production pectin oligosaccharides using Humicolainsolens Y1-derived unusual pectatelyase. J. Biosci. Bioeng. 2019, 129, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf, A Physicochem Eng Asp. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009, 164, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Premkumar, M.; Shanthakumar, S. Process optimization for Cr(VI) removal by Mangifera indica seed powder: a response surface methodology approach. Desalin. Water Treat. 2013, 53, 1653–1663. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S.; Saldanha, S.A.; Santos, P.A.; Salum, S.S.; Salum, S.S. Malachite green adsorption by mango (Mangifera indica L.) seed husks: Kinetic, equilibrium and thermodynamic studies. Desalination and Water Treat. 2010, 19, 241–248. [Google Scholar] [CrossRef]
- Merheb, R.; Abdel-Massih, R.M.; Karam, M.C. Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int. J. Biol. Macromol. 2019, 121, 1–5. [Google Scholar] [CrossRef]
- Chavan, P.; Singh, A.K.; Kaur, G. Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review. J. Food Process Eng. 2018, 41, e12895. [Google Scholar] [CrossRef]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of Pineapple Waste: A Review. J. Food Sci. Technol. 2013, 6, 10–18. [Google Scholar] [CrossRef]
- Deliza, R.; Rosenthal, A.; Abadio, F.B.D.; Silva, C.H.O.; Castillo, C. Application of high pressure technology in the fruit juice processing: Benefits perceived by consumers. J. Food Eng. 2005, 67, 241–246. [Google Scholar] [CrossRef]
- Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani DG, S.; Mozef, T. Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Environ. Earth Sci. 2017, 60, 012013. [CrossRef]
- Seguí Gil, L.; Fito Maupoey, P. An integrated approach for pineapple waste valorization. Bio-ethanol production and bromelain extraction from pineapple residues. J. Clean. Prod. 2018, 172, 1224–1231. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding against Economic Slowdowns and Downturns. FAO, Rome. 2019.
- Harouna, D.V.; Venkataramana, P.B.; Matemu, A.O.; Alois Ndakidemi, P. Agro-morphological exploration of some unexplored wild vigna legumes for domestication. Agronomy. 2020, 10, 1–26. [Google Scholar] [CrossRef]
- Singh, A.; Dubey, P.K.; Chaurasia, R.; Dubey, R.K.; Pandey, K.K.; Singh, G.S.; Abhilash, P.C. Domesticating the Undomesticated for Global Food and Nutritional Security: Four Steps. Agronomy. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Singh, A.; Dubey, R.K.; Bundela, A.K.; Abhilash, P.C. The trilogy of wild crops, traditional agronomic practices, and un-sustainable development goals. Agronomy. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, Y.-B.; Hwang, K.-E.; Song, D.-H.; Ham, Y.-K.; Kim, H.-W.; Kim, C.-J. Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poult. Sci. J. 2016, 95, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Huc-Mathis, D.; Journet, C.; Fayolle, N.; Bose, V. Emulsifying properties of food by-products: Valorizing apple pomace and oat bran. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 568, 84–91. [Google Scholar] [CrossRef]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef]
- Gunes, R.; Palabiyik, I.; Toker, O.S.; Konar, N.; Kurultay, S. Incorporation of Defatted Apple Seeds in Chewing Gum System and Phloridzin Dissolution Kinetics. J. Food Eng. 2019, 255, 9–14. [Google Scholar] [CrossRef]
- Rotta, E.M.; de Morais, D.R.; Biondo PB, F.; dos Santos, V.J.; Matsushita, M.; Visentainer, J.V. Use of avocado peel (Persea americana) in tea formulation: A functional product containing phenolic compounds with antioxidant activity. Acta Sci. Technol. 2016, 38, 23–29. [Google Scholar] [CrossRef]
- Utrera, M.; Rodríguez-Carpena, J.-G.; Morcuende, D.; Estévez, M. Formation of Lysine-derived oxidation products and loss of Tryptophan during processing of porcine patties with added avocado by products. J. Agric. Food Chem. 2012, 60, 3917–3926. [Google Scholar] [CrossRef] [PubMed]
- Chel-Guerrero, L.; Barbosa-Martín, E.; Martínez-Antonio, A.; González-Mondragón, E.; Betancur-Ancona, D. Some physicochemical and rheological properties of starch isolated from avocado seeds. Int. J. Biol. Macromol, 2016; 86, 302–308. [Google Scholar] [CrossRef]
- Barbosa-Martín, E.; Chel-Guerrero, L.; González-Mondragón, E.; Betancur-Ancona, D. Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food Bioprod. Process. 2016, 100, 457–463. [Google Scholar] [CrossRef]
- Lee, E.-H. , Yeom, H.-J., Ha, M.-S., & Bae, D.-H. Development of banana peels jelly and its antioxidant and textural properties. Food Sci. Biotechnol. 2010, 19, 449–455. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv.Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Espitia, P. J. P. , Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., & McHugh, T. H. Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Lang, G.; Buchbauer, G. A review on recent research results (2008-2010) on essential oils as antimicrobials and anti-fungal. A review. Flavour Fragr. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Mainente, F.; Menin, A.; Alberton, A.; Zoccatelli, G.; Rizzi, C. Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders. Int. J. Food Sci. Technol. 2019, 54, 952–958. [Google Scholar] [CrossRef]
- Acun, S.; Gül, H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crops Foods. 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Mattos, G.N.; Tonon, R.V.; Furtado AA, L.; Cabral LM, C. Grape by-product extracts against microbial proliferation and lipid oxidation: a review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao UJ, S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Ashoush, I.S.; Gadallah MG, E. Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J. Dairy Food Sci. 2011, 6, 35–42. [Google Scholar]
- Adilah, A.N.; Jamilah, B.; Noranizan, M.A.; Hanani ZA, N. Utilization of mango peel extracts on the biodegradable films for active pack by-product. Food Packag. Shelf Life. 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Torres-Leon, C. Vicente, A. A., Flores-Lopez, M. L., Rojas, R., Serna-Cock, L., Alvarez- Perez, O. B., et al. Edible films and coatings based on mango (var. Ataulfo) by-products to improve the gas transfer rate of peach. LWT- Food Sci. Technol, 2018; 97, 624–631. [Google Scholar] [CrossRef]
- Kodagoda, K.H.G.K.; Marapana, R.A.U.J. Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties. J. Pharmacogn. Phytochem. 2017, 6, 492–497. [Google Scholar]
- Arshad, Z.M.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef] [PubMed]
- Laily, N.; Kusumaningtyas, R.W.; Sukarti, I.; Rini, M.R.D.K. The Potency of Guava (Psidium guajava L.) Leaves as a Functional Immunostimulatory Ingredient. Procedia Chem. 2015, 14, 301–307. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.; Vertuani, S. Synthesis, Antioxidant and Antimicrobial activity of a aew Phloridzin derivative for dermo-cosmetic applications. Molecules. 2012, 17, 13275–13289. [Google Scholar] [CrossRef]
- Antika, L.D.; Lee, E.J.; Kim, Y.H.; Kang, M.K.; Park, S.H.; Kim, D.Y.; Oh, H.; Choi, Y.J.; Kang, Y.H. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing catenin activity via GSK-3-inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017, 49, 42–52. [Google Scholar] [CrossRef]
- Nair, S.V.; Ziaullah Rupasinghe, H.P. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression. PLoS One. 2014, 9, 1–16.e107149. [Google Scholar] [CrossRef]
- Gonzalez, J.; Donoso, W.; Sandoval, N.; Reyes, M.; Gonzalez, P.; Gajardo, M.; Morales, E.; Neira, A.; Razmilic, I.; Yuri, J.A.; Carrasco, R.M. Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE−/− Mice. Evid.-based Complement. Altern. Med. 2015, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yu, X. , Lin, H., Wang, Y., Lv, W., Zhang, S., and Qian, Y. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco Targets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef]
- Miller, J. A. , Thompson, P. A., Hakim, I. A., Chow, H. H. S., and Thomson, C. A. D-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev. 2011, 5, 31–42. [Google Scholar] [CrossRef]
- Petersen, K.S.; Smith, C. Ageing-Associated Oxidative Stress and Inflammation Are Alleviated by Products from Grapes. Oxidative Med. Cell. Longev. 2016, 1–12. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grapes seed oil compounds: Biological and chemical actions for health. Nutr. Metab. Insights. 2016, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Mangos and their bioactive components: Adding variety to the fruit plate for health. Food Funct. 2017, 8, 3010–3032. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin-An emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 2012, 24, 64–73. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Lin, H.; Song, J.; Wang, J.; Yin, Y.; Zhao, J.; Xu, X.; Li, Z.; Li, L. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur. J. Pharmacol. 2018, 824, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, P.; Wojdyło, A. Content of bioactive compounds in the peach kernels and their antioxidants, anti-hyperglycemic, anti-aging properties. Eur. Food Res. Technol. 2019, 245, 1123–1136. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple pomace: a versatile a substrate for biotechnological applications. Crit. Rev. Biotechnol. 2008, 28, 1–12. [Google Scholar] [CrossRef]
- Palma, C.; Lloret, L.; Puen, A.; Tobar, M.; Contreras, E. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chin. J. Chem. Eng. 2016, 24, 521–528. [Google Scholar] [CrossRef]
- Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S.-K. Production of enzymes from agricultural wastes and their potential industrial applications. Adv. Food Nutr. Res. 2017, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Mishra, S.S.; Kayitesi, E.; Ray, R.C. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environ. Res. 2016, 146, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Botella, C.; Diaz, A.; de Ory, I.; Webb, C.; Blandino, A. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 2007, 42, 98–101. [Google Scholar] [CrossRef]
- Jawad, A.H.; Alkarkhi AF, M.; Jason, O.C.; Easa, A.M.; NikNorulaini, N.A. Production of the lactic acid from mango peel waste – Factorial experiment. J. King Saud Univ. Sci. 2013, 25, 39–45. [Google Scholar] [CrossRef]
- Kumar, D.; Yadav, K.K.; Muthukumar, M.; Garg, N. Production and characterization of α-amylase from mango kernel by Fusarium solani NAIMCC-F-02956 using submerged fermentation. J. Environ. Biol. 2013, 34, 1053–1058. [Google Scholar] [PubMed]
- Rani, D.S.; Nand, K. Ensilage of pineapple processing waste for methane generation. Waste Manage. 2004, 24, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Kumar, D.; Samanta, S.; Vishwakarma, M.K. A comparative study of ethanol production from various agro residues by using Saccharomyces cerevisiae and Candida albicans. J. Yeast Fungal Res. 2012, 3, 12–17. [Google Scholar]
- Adie Gilbert, U.; Unuabonah Emmanuel, I.; Adeyemo Adebanjo, A.; Adeyemi Olalere, G. Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: Defatted Carica papaya seeds. Biomass Bioenerg. 2011, 35, 2517–2525. [Google Scholar] [CrossRef]
| By-product | Moisture | Ash | Protein | Fat | Carbohydrate | Fiber (%) | References |
|---|---|---|---|---|---|---|---|
| Apple pomace | 8–10.6 |
1–6.1 | 3–5.67 | 1.2–3.9 | 48–62 | 4.7–51.1 | [51] |
| Mango seed kernel | 45.2 | 3.2 | 6.36 | 13.3 | 32.2 | 2.02 | [53,63] |
| Ripe mango peel flour | 7.86 | 4.5 | 4.1 | 4 | 29.4-32 | 51.1-54.2 | [64] |
| Banana peel | 13.6 | 9.83 | 5.53 | 23.93 | 32.39 | 14.83 | |
| Avocado peel | - | 3 | 4.5 | 4.6 | 72 | 3.8 | [59] |
| Avocado seed | 67.2 | 2.3 | 9.6 | 3.9 | - | 10.7 |
[65] |
| Pineapple raw peel |
82.7 | 5.0 | 8.9-9.2 | 1.3 | - | 16.3 | |
| Papaya raw peel |
86.8 | 11.6 | 20.27 | 2.3 | - | 18.5 | |
| Papaya seed | 5.8 | 6 | 23.6 | 23.5 | - | 47.2 | |
| Grape pomace | 3.37 |
4.68 | 8.49 | 8.16 | 29.20 | 46.17 | [66] |
| Citrus peel | 2.49 | 13.20 | 0.42 | 9.74 | 71.57 | 2.58 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
