Defining the Most Generalized, Natural Extension of the Expected Value on Measurable Functions
Version 2 : Received: 23 February 2023 / Approved: 23 February 2023 / Online: 23 February 2023 (03:45:21 CET)
Version 3 : Received: 28 February 2023 / Approved: 28 February 2023 / Online: 28 February 2023 (04:56:00 CET)
Version 4 : Received: 1 March 2023 / Approved: 1 March 2023 / Online: 1 March 2023 (07:17:23 CET)
Version 5 : Received: 9 March 2023 / Approved: 9 March 2023 / Online: 9 March 2023 (06:42:54 CET)
Version 6 : Received: 11 March 2023 / Approved: 14 March 2023 / Online: 14 March 2023 (01:38:37 CET)
Version 7 : Received: 17 March 2023 / Approved: 17 March 2023 / Online: 17 March 2023 (04:04:07 CET)
Version 8 : Received: 30 March 2023 / Approved: 30 March 2023 / Online: 30 March 2023 (02:46:43 CEST)
Version 9 : Received: 4 April 2023 / Approved: 6 April 2023 / Online: 6 April 2023 (10:04:39 CEST)
Version 10 : Received: 6 April 2023 / Approved: 7 April 2023 / Online: 7 April 2023 (05:16:10 CEST)
Version 11 : Received: 25 April 2023 / Approved: 26 April 2023 / Online: 26 April 2023 (03:35:26 CEST)
How to cite: Krishnan, B. Defining the Most Generalized, Natural Extension of the Expected Value on Measurable Functions. Preprints 2023, 2023020367. https://doi.org/10.20944/preprints202302.0367.v2 Krishnan, B. Defining the Most Generalized, Natural Extension of the Expected Value on Measurable Functions. Preprints 2023, 2023020367. https://doi.org/10.20944/preprints202302.0367.v2
Abstract
Keywords
Subject
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (1)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
Commenter: Bharath Krishnan
Commenter's Conflict of Interests: Author