Version 1
: Received: 17 February 2023 / Approved: 20 February 2023 / Online: 20 February 2023 (01:38:22 CET)
How to cite:
Garg, L.; Attard, N.; Caruana, R.J.; Pawar, B.D.; McClean, S.I.; Buttigieg, S.C.; Calleja, N. Characterising Hospital Admission Patterns and Length of Stay in the Emergency Department at Mater Dei Hospital Malta. Preprints.org2023, 2023020315. https://doi.org/10.20944/preprints202302.0315.v1
Garg, L.; Attard, N.; Caruana, R.J.; Pawar, B.D.; McClean, S.I.; Buttigieg, S.C.; Calleja, N. Characterising Hospital Admission Patterns and Length of Stay in the Emergency Department at Mater Dei Hospital Malta. Preprints.org 2023, 2023020315. https://doi.org/10.20944/preprints202302.0315.v1
Cite as:
Garg, L.; Attard, N.; Caruana, R.J.; Pawar, B.D.; McClean, S.I.; Buttigieg, S.C.; Calleja, N. Characterising Hospital Admission Patterns and Length of Stay in the Emergency Department at Mater Dei Hospital Malta. Preprints.org2023, 2023020315. https://doi.org/10.20944/preprints202302.0315.v1
Garg, L.; Attard, N.; Caruana, R.J.; Pawar, B.D.; McClean, S.I.; Buttigieg, S.C.; Calleja, N. Characterising Hospital Admission Patterns and Length of Stay in the Emergency Department at Mater Dei Hospital Malta. Preprints.org 2023, 2023020315. https://doi.org/10.20944/preprints202302.0315.v1
Abstract
Healthcare professionals and resource planners can use healthcare delivery process mining to ensure the optimal utilisation of scarce healthcare resources when developing policies. Within hospitals, patients' Length of Stay (LOS) and volume of admitted patients, in terms of number and characteristics (age, gender, and social deter-minants), are significant factors determining daily resource requirements. In this study, we used Coxian phase-type Distribution (C-PHD) based Phase-Type Survival (PTS) trees for analysing how covariates such as admission date, gender, age, district, and admissions source influence the admission rate and LOS distribution. PTS trees. This study used a two-year data set (2011-2012) of patients admitted to the Emergency Department at Mater Dei Hospital to generate models and an independent one-year data set (2013) of patients admitted to the Emergency Department at Mater Dei Hospital to evaluate. The PTS tree effectively clusters patients based on their LOS, considering the prognostic significance of different covariates related to patients' characteristics. Charac-terising these covariates provided meaningful results about LOS. Similarly, the PTS tree was used to effectively cluster patients based on the admission rate, considering the prognostic significance of these covariates.
Keywords
Length of stay estimation; Admission rate characterization; Resource requirement forecasting; Patientcare modelling; Hospital capacity planning; Phase type survival trees; Machine Learning; Health ML Extended Health Intelligence
Subject
Computer Science and Mathematics, Artificial Intelligence and Machine Learning
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.