Submitted:
11 February 2023
Posted:
13 February 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. The Conventional GQ: Purely Continuous Measure
3. GQ for a Purely Discrete Measure
4. GQ for a Measure with a Mix of Continuous and Discrete Spectra
Appendix: Relevant Orthogonal Polynomials
A.1 Discrete Weight Function
A.2 Discrete and Continuous Weight Function Mix
References
- H. Stroud and D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, 1966).
- N. Kovvali, Theory and Applications of Gaussian Quadrature Methods (Springer, 2011). [CrossRef]
- H. Brass and K. Petras, Quadrature Theory: The Theory of Numerical Integration on a Compact Interval (AMS, 2011).
- H. Moniem, Gaussian Quadrature for sums: A rapidly convergent summation scheme, Math. Comput. 79 (2010) 857.
- S. Engblom, Gaussian Quadratures with Respect to Discrete Measures (Uppsala University, Department of information technology, Technical report 2006-007, 2006).
- G. Szegő, Orthogonal Polynomials (American Mathematical Society, 1939).
- T. S. Chihara, An Introduction to Orthogonal Polynomials (Dover, 2011).
- M. E. H. Ismail, Classical and Quantum orthogonal polynomials in one variable (Cambridge University press, 2009).
- R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, 2010). [CrossRef]
- D. Zwillinger (ed.), Standard Mathematical Tables and Formulas, 31st edition (CRC press, 2003).
| GQ | |||||
| Charlier | 5.694 | 6.525 | 4.165 | 2.653 | 8.844 |
| Meixner () |
6.943 | 1.231 | 1.964 | 1.522 | 1.946 |
| Meixner () |
3.900 | 2.272 | 3.192 | 8.121 | 1.1969 |
| Meixner () |
9.541 | 5.266 | 1.131 | 2.588 | 8.008 |
| γ | |||||
| 0.01 | 4.002 | 7.725 | 9.770 | 2.220 | 5.329 |
| 0.10 | 3.600 | 8.826 | 2.469 | 6.222 | 5.390 |
| 0.20 | 8.514 | 4.065 | 1.075 | 9.438 | 1.799 |
| 0.30 | 9.999 | 6.666 | 4.314 | 2.807 | 8.968 |
| 1.0 | 0.000 | 6.218 | 3.524 | 6.920 | 3.727 |
| 2.0 | 2.220 | 7.682 | 2.634 | 1.146 | 3.361 |
| 3.0 | 1.332 | 5.954 | 3.267 | 5.579 | 1.173 |
| 4.0 | 1.649 | 2.702 | 3.098 | 2.159 | 1.153 |
| 5.0 | 9.704 | 6.219 | 2.166 | 1.878 | 4.597 |
| 1.0 | 1.721 | 2.023 | 1.311 | 6.808 | 6.817 |
| 2.0 | 6.495 | 2.465 | 4.263 | 3.666 | 1.138 |
| 3.0 | 1.939 | 1.256 | 6.439 | 8.849 | 2.534 |
| 4.0 | 1.987 | 2.338 | 5.232 | 1.174 | 4.689 |
| 5.0 | 9.304 | 2.860 | 2.477 | 9.514 | 5.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
