Submitted:
06 February 2023
Posted:
13 February 2023
You are already at the latest version
Abstract
Keywords:
1. Introducing M-basis functions
1.1. The third-order M-basis functions (minimum jerk)
1.2. The nth-order M-basis functions
1.3. The 4th-order M-basis (minimum snap)
2. The frequency specification of the M-basis functions
3. The applications of the M-basis function
3.1. Human movements
3.2. Slow signals
4. Discussion and conclusion
References
- Emadi Andani, M.; Bahrami, F. COMAP: A new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements. Hum. Mov. Sci. 2012, 31, 1037–1055. [Google Scholar] [CrossRef] [PubMed]
- http://www.shadmehrlab.org/book/minimum_jerk/minimumjerk.
- Sadeghi, M.; Emadi Andani, M.; Parnianpour, M.; Fattah, A. A bio-inspired modular hierarchical structure to plan the sit-to-stand transfer under varying environmental conditions. Neurocomputing 2013, 118, 311–321. [Google Scholar] [CrossRef]
- Sadeghi, M.; Emadi Andani, M.; Bahrami, F. Trajectory of human movement during sit to stand: a new modeling approach based on movement decomposition and multi-phase cost function. Exp Brain Res 2013, 229, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Emadi, M.; Bahrami, F.; Yazdanpanah, M.J.; Patla, A. , "Movement prediction using an MLP without internal feedback," 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), The Hague, Netherlands 2004, 6, 5975–5979. [Google Scholar] [CrossRef]
- Sadeghi, M.; Emadi Andani, M.; Parnianpour, M.; Fattah, A. A bio-inspired modular hierarchical structure to plan the sit-to-stand transfer under varying environmental conditions. Neurocomputing 2013, 118, 311–321. [Google Scholar] [CrossRef]
- KhazeniFard, A.; Bahrami, F.; Andani, M.E.; Ahmadabadi, M.N. , "An energy efficient gait trajectory planning algorithm for a seven linked biped robot using movement elements," 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 2015, pp. 1006. [Google Scholar] [CrossRef]
- Fligge, N.; McIntyre, J.; van der Smagt, P. , "Minimum jerk for human catching movements in 3D," 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 2012, pp. [CrossRef]
- Wang, C.; Peng, L.; Hou, Z.G.; Luo, L.; Chen, S.; Wang, W. (2018). Experimental Validation of Minimum-Jerk Principle in Physical Human-Robot Interaction. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP, 1130. [Google Scholar] [CrossRef]
- Slupinski, L.; de Lussanet, M.H.E.; Wagner, H. Analyzing the kinematics of hand movements in catching tasks—An online correction analysis of movement toward the target’s trajectory. Behav Res 2018, 50, 2316–2324. [Google Scholar] [CrossRef]
- Asker, A.; Assal, S.F.M. . A Systematic approach for designing a multi-function sit-to-stand mobility assistive device based on performance optimization. Adv. Robot. 2019, 33, 90–105. [Google Scholar] [CrossRef]
- Asker, A.; Assal SF, M.; Ding, M.; Takamatsu, J.; Ogasawara, T.; Mohamed, A.M. Modeling of natural sit-to-stand movement based on minimum jerk criterion for natural-like assistance and rehabilitation. Adv. Robot. 2017, 31, 901–917. [Google Scholar] [CrossRef]
- Moullet, E.; Roby-Brami, A.; Guigon, E. What is the nature of motor adaptation to dynamic perturbations? PLOS Comput. Biol. 2022, 18, e1010470. [Google Scholar] [CrossRef]
- Bayle, N.; Lempereur, M.; Hutin, E.; Motavasseli, D.; Remy-Neris, O.; Gracies, J.M.; Cornec, G. Comparison of Various Smoothness Metrics for Upper Limb Movements in Middle-Aged Healthy Subjects. Sensors 2023, 23, 1158. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.T.; Hadjiosif, A.M.; Jang, J.; Zimnik, A.J.; Soteropoulos, D.S.; Baker, S.N.; Churchland, M.M.; Krakauer, J.W.; Shadmehr, R. Postural control of arm and fingers through integration of movement commands eLife 2020, 9, e52507. [CrossRef] [PubMed]
- Emadi Andani, M. Human movements are shaped by utilizing sensory information: a stochastic optimum model. Preprint 2023, 2023020073. [Google Scholar] [CrossRef]



| Original signal | The number of basis functions needed to reconstruct the original signal with an error rate under 5% | |
| Fourier-basis | M-basis | |
| cos(2π×t) | 3 | 8 |
| sin(2π×t) | 3 | 8 |
| cos(2π×2t) | 5 | 14 |
| sin(2π×2t) | 5 | 14 |
| sin(2π×t) + sin(2π×2t) | 5 | 14 |
| 2sin(2π×t) + sin(2π×2t) | 5 | 14 |
| cos(2π×0.5t) | >51 | 4 |
| cos(2π×0.53t) | >51 | 6 |
| cos(2π ×0.53t - π/8) | >51 | 6 |
| cos(2π×1.38t) | >51 | 12 |
| cos(2π×1.38t + π/12) | >51 | 12 |
| cos(2π×1.38t + π/12) + cos(2π ×0.53t - π/8) | >51 | 10 |
| cos(2π×1.38t + π/12) + cos(2π ×0.53t - π/8) + cos(2π ×0.17t + π/3) | >51 | 10 |
| sin(2π ×t) + cos(2π×1.38t + π/12) + cos(2π ×0.53t - π/8) + cos(2π ×0.17t + π/3) | >51 | 10 |
| sin(2π ×t) + sin(2π ×2t) + cos(2π×1.38t + π/12) + cos(2π ×0.53t - π/8) + cos(2π ×0.17t + π/3) |
>51 | 14 |
| cos(2π×2.5t) | >51 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
