Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Endogenous piRNAs Can Interact with Omicron Variant of the SARS-CoV-2 Genome

Version 1 : Received: 2 February 2023 / Approved: 7 February 2023 / Online: 7 February 2023 (08:54:49 CET)

A peer-reviewed article of this Preprint also exists.

Rakhmetullina, A.; Akimniyazova, A.; Niyazova, T.; Pyrkova, A.; Kamenova, S.; Kondybayeva, A.; Ryskulova, A.-G.; Ivashchenko, A.; Zielenkiewicz, P. Endogenous piRNAs Can Interact with the Omicron Variant of the SARS-CoV-2 Genome. Curr. Issues Mol. Biol. 2023, 45, 2950-2964. Rakhmetullina, A.; Akimniyazova, A.; Niyazova, T.; Pyrkova, A.; Kamenova, S.; Kondybayeva, A.; Ryskulova, A.-G.; Ivashchenko, A.; Zielenkiewicz, P. Endogenous piRNAs Can Interact with the Omicron Variant of the SARS-CoV-2 Genome. Curr. Issues Mol. Biol. 2023, 45, 2950-2964.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic still able to infect the population in many countries. The Omicron strain is the most mutated variant of SARS-CoV-2. The high transmissibility of the strain and the ability to evade immunity require a priority study of its properties in order to quickly create effective means of preventing it. The present work is devoted to the study of in silico interaction of piRNAs with the genome of the SARS-CoV-2 (gRNA) in order to identify endogenous piRNAs and propose synthetic piRNAs with high antiviral activity for drug development. The studies were carried out using proven bioinformatic methods of interaction of the entire SARS-CoV-2 genome with more than eight million piRNAs. Binding sites (BSs) of piRNAs in the 5'UTR were located with overlapping nucleotide sequences called clusters of BSs. Several clusters of BSs were found in the nsp3, nsp7, RNA-dependent RNA polymerase, endoRNAse, S surface glycoprotein, ORF7a and nucleocapsid. 16 synthetic piRNAs have been proposed that interact with gRNA with free binding energy from -170 kJ/mol to -175 kJ/mol, which can be used to create drugs that suppress the reproduction of SARS-CoV-2.

Keywords

Omicron; SARS-CoV-2; piRNAs; coronavirus genome; translation; replication

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.