Submitted:
27 January 2023
Posted:
03 February 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Astaxanthin structure
The best medium cultures for Astaxanthin production
Astaxanthin producing Genes and engineering
Effect of different stresses, Nanoparticles, Bio acids, and Phytohormones on microalgae growth and Astaxanthin enhancement.
1-Different stresses
2- Nanoparticles
3- Bioacids, Phytohormones, etc
Auxins
Cytokinins
Gibberellins
Absic acids(ABA)
Conclusion
Acknowledgments
References
- Aflalo, C.; Meshulam, Y.; Zarka, A.; Boussiba, S. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and bioengineering, 2007, 98, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Al-Bulishi, M. S. M.; Changhu, X.; Tang, Q.-J. Health aspects of astaxanthin: a review. Canad. J. Clin. Nutr 2015, 3, 71–78. [Google Scholar] [CrossRef]
- Alsenani, F.; Wass, T. J.; Ma, R.; Eltanahy, E.; Netzel, M. E.; et al. Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae. Algal research 2019, 37, 320–335. [Google Scholar] [CrossRef]
- Álvarez, V.; Rodríguez-Sáiz, M.; De La Fuente, J. L.; Gudiña, E. J.; Godio, R. P.; et al. The crtS gene of Xanthophyllomyces dendrorhousencodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 2006, 43. [Google Scholar] [CrossRef]
- Ambati, R. R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R. G. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Arango, I. Magnitude scaling factors for soil liquefaction evaluations. Journal of Geotechnical Engineering 1996, 122, 929–936. [Google Scholar] [CrossRef]
- Arora, S.; Mishra, G. Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830. Journal of Applied Phycology 2021, 33, 287–299. [Google Scholar] [CrossRef]
- Bahador, E.; Einali, A.; Azizian-Shermeh, O.; Sangtarash, M. H. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. Aquatic Toxicology, 1053. [Google Scholar]
- Borowitzka, M. 1992a. Comparing carotenogenesis in Dunaliella and Haematococcus: implications for commercial production strategies. Profiles on biotechnology. Universidade de Santiago de Compostela, Santiago de Compostela, 301-310.
- Borowitzka, M. A. Algal biotechnology products and processes—matching science and economics. Journal of Applied Phycology, 1992, 4, 267–279. [Google Scholar] [CrossRef]
- Boussiba, S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiologia Plantarum 2000, 108, 111–117. [Google Scholar] [CrossRef]
- Boussiba, S.; Bing, W.; Yuan, J.-P.; Zarka, A.; Chen, F. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnology letters 1999, 21, 601–604. [Google Scholar] [CrossRef]
- Brian, P. Effects of gibberellins on plant growth and development. Biological reviews 1959, 34, 37–77. [Google Scholar] [CrossRef]
- Burkiewicz, K. The influence of gibberellins and cytokinins on the growth of some unicellular Baltic algae.
- Cai, M.; Li, Z.; Qi, A. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis. Chinese Journal of Oceanology and Limnology 2009, 27, 370. [Google Scholar] [CrossRef]
- Chen, G.; Wang, B.; Han, D.; Sommerfeld, M.; Lu, Y.; et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). The Plant Journal 2015, 81, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Wei, D.; Lim, P.-E. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. Bioresource Technology 2020, 295, 122242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W. H.; Wong, L. S.; Hong, Y. Z.; Tan, Y. M.; Ahmad, Z. A. The effect of Argentum and Cadmium towards astaxanthin content in green algae, Haematococcus pluvialis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2018, 20, 43–47. [Google Scholar]
- Choi, S.-A.; Jeong, Y.; Lee, J.; Huh, Y. H.; Choi, S. H. Biocompatible liquid-type carbon nanodots (C-paints) as light delivery materials for cell growth and astaxanthin induction of Haematococcus pluvialis. Materials Science and Engineering: C 2020, 109, 110500. [Google Scholar] [CrossRef]
- Choi, Y.-E.; Yun, Y. S.; Park, J. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnology progress 2002, 18, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Christian, D.; Zhang, J.; Sawdon, A. J.; Peng, C.-A. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology 2018, 256, 548–551. [Google Scholar] [CrossRef]
- Cui, H.; Chen, J.; Wang, L.; Hu, Z.; Qin, S. Gene cloning and bioinformatics analysis of novel blue photoreceptor phototropin from green alga Haematococcus pluvialis. Southwest China Journal of Agricultural Sciences 2017, 30, 2639–2647. [Google Scholar]
- Czerpak, R.; Krotke, A.; Mical, A. Comparison of stimulatory effect of auxins and cytokinins on protein, saccharides and chlorophylls content in Chlorella pyrenoidosa Chick. Polskie Archiwum Hydrobiologii 1999, 46. [Google Scholar]
- Da Costa, C. H.; Perreault, F.; Oukarroum, A.; Melegari, S. P.; Popovic, R.; et al. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii. Science of The Total Environment 2016, 565, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Danxiang Han &Yantao Li, Q. H. Astaxanthin in microalgae: pathways, functions and biotechnological implications. ALGAE 2013, 28, 131–147. [Google Scholar]
- Dash, A.; Singh, A. P.; Chaudhary, B. R.; Singh, S. K.; Dash, D. Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-micro letters 2012, 4, 158–165. [Google Scholar] [CrossRef]
- Déniel, M.; Errien, N.; Daniel, P.; Caruso, A.; Lagarde, F. Current methods to monitor microalgae-nanoparticle interaction and associated effects. Aquatic Toxicology 2019, 217, 105311. [Google Scholar] [CrossRef] [PubMed]
- Déniel, M.; Errien, N.; Lagarde, F.; Zanella, M.; Caruso, A. Interactions between polystyrene nanoparticles and Chlamydomonas reinhardtii monitored by infrared spectroscopy combined with molecular biology. Environmental Pollution 2020, 266, 115227. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhao, P.; Peng, J.; Zhao, Y.; Xu, J.-W.; et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal research 2018, 33, 256–265. [Google Scholar] [CrossRef]
- Djearamane, S.; Lim, Y. M.; Wong, L. S.; Lee, P. F. Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ 2019, 7, e7582. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Bocanegra, A.; Torres-Muñoz, J. Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy. Applied Microbiology and Biotechnology 2004, 66, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Eonseon, J.; Lee, C.-G.; Polle, J. E. Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. Journal of microbiology and biotechnology 2006, 16, 821–831. [Google Scholar]
- Fábregas, J.; Domínguez, A.; Álvarez, D. G.; Lamela, T.; Otero, A. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnology letters 1998, 20, 623–626. [Google Scholar] [CrossRef]
- Fábregas, J.; Domínguez, A.; Regueiro, M.; Maseda, A.; Otero, A. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology 2000, 53, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Vonshak, A.; Boussiba, S. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). Journal of phycology 1994, 30, 829–833. [Google Scholar] [CrossRef]
- Fang, T.; Chiou, T. Batch cultivation and astaxanthin production by a mutant of the red yeast, Phaffia rhodozyma NCHU-FS501. Journal of industrial microbiology 1996, 16, 175–181. [Google Scholar] [CrossRef]
- Gao, Z.; Meng, C. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzyme and Microbial Technology 2012, 51, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Meng, C.; Chen, Y. C.; Ahmed, F.; Mangott, A.; et al. Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. Journal of Applied Phycology 2015, 27, 1853–1860. [Google Scholar] [CrossRef]
- Gao, Z.; Meng, C.; Gao, H.; Li, Y.; Zhang, X.; et al. Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin a3 (ga 3).
- Gao, Z.; Meng, C.; Gao, H.; Zhang, X.; Xu, D. Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biological Research, 2013, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Meng, C.; Zhang, X.; Xu, D.; Zhao, Y. Differential Expression of Carotenogenic Genes, Associated Changes on Astaxanthin Production and Photosynthesis Features Induced by JA in H. pluvialis. PLOS ONE 2012, 7, e42243. [Google Scholar] [CrossRef] [PubMed]
- Garshasbi, H.; Fakheri, B.; Jalili, H.; Rahaie Jahromi, M.; Mahdinezhad, N. Astaxanthin Production and Expression of its Metabolic Pathway Genes under the influence of Linoleic Acid and Nanoparticles in Microalga (Hematococcus Lacustris). Fisheries Science and Technology 2020, 9, 144–155. [Google Scholar]
- Garshasbi, H.; Omidi, M.; Torabi, S.; Davodi, D. The study of phytohormones and explants on callus induction and regeneration of sainfoin (Pnobrychis sativa). Pak. J. Agri. Sci 2012, 49, 289–292. [Google Scholar]
- Garshasbi, H.; Omidi, M.; Torabi, S.; Davoudi, D. اثر هورمون گیاهی و ریز نمونه برکالزایی و باززایی اسپرس زراعی (Onobrychis sativa L.). Iranian Journal of Crop Sciences 2009, 11, 101–108. [Google Scholar]
- Gong, X.; Chen, F. Optimization of culture medium for growth of Haematococcus pluvialis. Journal of Applied Phycology 1997, 9, 437–444. [Google Scholar] [CrossRef]
- Grünewald, K.; Eckert, M.; Hirschberg, J.; Hagen, C. Phytoene Desaturase Is Localized Exclusively in the Chloroplast and Up-Regulated at the mRNA Level during Accumulation of Secondary Carotenoids in <em>Haematococcus pluvialis</em> (Volvocales, Chlorophyceae). Plant Physiology 2000, 122, 1261–1268. [Google Scholar] [PubMed]
- Harker, M.; Tsavalos, A. J.; Young, A. J. Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis. Journal of Applied Phycology 1995, 7, 399–406. [Google Scholar] [CrossRef]
- Harker, M.; Tsavalos, A. J.; Young, A. J. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technology 1996, 55, 207–214. [Google Scholar] [CrossRef]
- Hassan Jalili, A. K. Effect of linoleic acid on pigments content of Chlorella sorokiniana under autotrophic and light shock condition. Tehran university.
- Hata 2016, N.; Ogbonna, J. C.; Hasegawa, Y.; Taroda, H.; Tanaka, H. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology 2001, 13, 395–402. [Google Scholar] [CrossRef]
- He, P.; Duncan, J.; Barber, J. Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. Journal of Integrative Plant Biology 2007, 49, 447–451. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F. M. Astaxanthin: A Review of its Chemistry and Applications. Critical Reviews in Food Science and Nutrition 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.-E.; Choi, Y. Y.; Sim, S. J. Effect of red cyst cell inoculation and iron(II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. Journal of Biotechnology 2016, 218, 25–33. [Google Scholar] [CrossRef]
- Hong, Y. Z. Effect of different Concentrations of Cadmium Nanoparticle, PH and Salinity on Production of Astaxanthin in Haematococcus Pluvialis. INTI International University.
- Hu 2016, Q.; Hu, S.; Fleming, E.; Lee, J.-Y.; Luo, Y. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. International Journal of Biological Macromolecules 2020, 151, 747–756. [Google Scholar]
- Hu, Q.; Huang, D.; Li, A.; Hu, Z.; Gao, Z.; et al. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnology for Biofuels 2021, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-C.; Chen, F.; Sandmann, G. Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. Journal of Biotechnology 2006, 122, 176–185. [Google Scholar] [CrossRef]
- Imamoglu, E.; Dalay, M. C.; Sukan, F. V. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New biotechnology 2009, 26, 199–204. [Google Scholar] [CrossRef]
- Issarapayup, K.; Powtongsook, S.; Pavasant, P. Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. Journal of Biotechnology 2009, 142, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Jafari, Y.; Sabahi, H.; Rahaie, M. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris. Food Chemistry 2016, 211, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Jalili, H.; Razavi, H.; Safari, M.; Amrane, A. Kinetic analysis and effect of culture medium and coating materials during free and immobilized cell cultures of Bifidobacterium animalis subsp. lactis Bb 12. lactis Bb 12. Electronic Journal of Biotechnology 2010, 13, 2–3. [Google Scholar] [CrossRef]
- Ji, J.; Long, Z.; Lin, D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal 2011, 170, 525–530. [Google Scholar] [CrossRef]
- Johnson, E. A.; An, G.-H. Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology 1991, 11, 297–326. [Google Scholar] [CrossRef]
- Jusoh, M.; Loh, S. H.; Chuah, T. S.; Aziz, A.; San Cha, T. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal research 2015, 9, 14–20. [Google Scholar] [CrossRef]
- Kajiwara, S.; Kakizono, T.; Saito, T.; Kondo, K.; Ohtani, T.; et al. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant molecular biology 1995, 29, 343–352. [Google Scholar] [CrossRef]
- Kakizono, T.; Kobayashi, M.; Nagai, S. Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering 1992, 74, 403–405. [Google Scholar] [CrossRef]
- Kamath, B. S.; Vidhyavathi, R.; Sarada, R.; Ravishankar, G. Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresource Technology 2008, 99, 8667–8673. [Google Scholar] [CrossRef] [PubMed]
- Katsuda, T.; Shimahara, K.; Shiraishi, H.; Yamagami, K.; Ranjbar, R.; et al. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of haematococcus pluvialis. Journal of Bioscience and Bioengineering 2006, 102, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Khalili, Z.; Jalili, H.; Noroozi, M.; Amrane, A. Effect of linoleic acid and methyl jasmonate on astaxanthin content of Scenedesmus acutus and Chlorella sorokiniana under heterotrophic cultivation and salt shock conditions. Journal of Applied Phycology 2019, 31, 2811–2822. [Google Scholar] [CrossRef]
- Khalili, Z.; Jalili, H.; Noroozi, M.; Amrane, A.; Ashtiani, F. R. Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions. Phycologia 2020, 59, 54–62. [Google Scholar] [CrossRef]
- Kim, Y.-E.; Matter, I. A.; Lee, N.; Jung, M.; Lee, Y.-C.; et al. Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresource Technology 2020, 123270. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-E.; Matter, I. A.; Lee, N.; Jung, M.; Lee, Y.-C.; et al. Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresource Technology 2020, 307, 123270. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Hirai, N.; Kurimura, Y.; Ohigashi, H.; Tsuji, Y. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regulation 1997, 22, 79–85. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kakizono, T.; Nagai, S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. Journal of Fermentation and Bioengineering 1991, 71, 335–339. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kakizono, T.; Nagai, S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and environmental microbiology 1993, 59, 867–873. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kakizono, T.; Nishio, N.; Nagai, S. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering 1992, 74, 61–63. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kurimura, Y.; Tsuji, Y. Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnology letters 1997, 19, 507–509. [Google Scholar] [CrossRef]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as versatile cellular factories for valued products. Algal research 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Krause, W.; Henrich, K.; Paust, J.; Ernst, H. Preparation of astaxanthin. Google Patents.
- Lababpour 1997, A.; Shimahara, K.; Hada, K.; Kyoui, Y.; Katsuda, T.; et al. Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. Journal of Bioscience and Bioengineering 2005, 100, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Jeon, M. S.; Kim, J. Y.; Lee, S. H.; Kim, D. G.; et al. Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: Elevation of cell density and prolongation of exponential stage. Algal research 2019, 41, 101547. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lee, H. U.; Lee, K.; Kim, B.; Lee, S. Y.; et al. Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp. Chemical Engineering Journal 2014, 245, 143–149. [Google Scholar] [CrossRef]
- Lee, Y. K.; Soh, C. W. Accumulation of astaxanthin in haematococcus lacustris (chlorophyta) 1. Journal of phycology 1991, 27, 575–577. [Google Scholar] [CrossRef]
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances 2011, 29, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, H.; Mao, X.; Lao, Y.; Chen, F. Enhanced Photosynthesis of Carotenoids in Microalgae Driven by Light-Harvesting Gold Nanoparticles. ACS Sustainable Chemistry & Engineering 2020, 8, 7600–7608. [Google Scholar]
- Lin, B.; Ahmed, F.; Du, H.; Li, Z.; Yan, Y.; et al. Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. Journal of Applied Phycology 2018, 30, 1549–1561. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, Y.; He, C.; Wang, X.; Chen, S.; et al. Enhancement of linoleic acid content stimulates astaxanthin esterification in Coelastrum sp. Bioresource Technology 2020, 300, 122649. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R. T.; Cysewski, G. R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 2000, 18, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, P.; Liu, S.; Gan, Q.; Cui, H.; et al. Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresource Technology 2010, 101, 6468–6474. [Google Scholar] [CrossRef] [PubMed]
- Machmudah, S.; Shotipruk, A.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of Astaxanthin from Haematococcus pluvialis Using Supercritical CO2 and Ethanol as Entrainer. Industrial & Engineering Chemistry Research 2006, 45, 3652–3657. [Google Scholar]
- Mansouri, H.; Ebrahim Nezhad, S. Improvement in biochemical parameters and changes in lipid profile of Scenedesmus obliquus by plant growth regulators under mixotrophic condition. Biomass and Bioenergy 2020, 140, 105708. [Google Scholar] [CrossRef]
- Meng, C.-X.; Gao, Z.-Q. Effect of Extraneous Gibberellin (GA_3) on Astaxanthin Accumulation of Haematoccus pluvialis [J]. Fisheries Science 2007, 5. [Google Scholar]
- Miki, W. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry 1991, 63, 141–146. [Google Scholar] [CrossRef]
- Misawa, N.; Satomi, Y.; Kondo, K.; Yokoyama, A.; Kajiwara, S.; et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 1995, 177. [Google Scholar] [CrossRef] [PubMed]
- Nahidian, B.; Ghanati, F.; Shahbazi, M.; Soltani, N. Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresource Technology 2018, 255, 229–237. [Google Scholar] [CrossRef]
- Ojima, K.; Breitenbach, J.; Visser, H.; Setoguchi, Y.; Tabata, K.; et al. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase. Molecular Genetics and Genomics 2006, 275, 148–158. [Google Scholar] [CrossRef]
- Olaizola, M. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology 2000, 12, 499–506. [Google Scholar] [CrossRef]
- Orosa, M.; Franqueira, D.; Cid, A.; Abalde, J. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresource Technology 2005, 96, 373–378. [Google Scholar] [CrossRef]
- Orosa, M.; Valero, J.; Herrero, C.; Abalde, J. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology letters 2001, 23, 1079–1085. [Google Scholar] [CrossRef]
- Pan-Utai, W.; Parakulsuksatid, P.; Phomkaivon, N. Effect of inducing agents on growth and astaxanthin production in Haematococcus pluvialis: Organic and inorganic. Biocatalysis and Agricultural Biotechnology 2017, 12, 152–158. [Google Scholar] [CrossRef]
- Panis, G.; Carreon, J. R. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal research 2016, 18, 175–190. [Google Scholar] [CrossRef]
- Park, E.-K.; Lee, C.-G. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. Journal of microbiology and biotechnology 2001, 11, 1024–1030. [Google Scholar]
- Park, J. C.; Choi, S. P.; Hong, M.-E.; Sim, S. J. Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess and biosystems engineering 2014, 37, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, G.; Plata-Díaz, A. M.; Zafra-Gómez, J. L.; López-Hernández, A. M. Operaciones fuera de presupuesto (off budget), factores políticos y deuda municipal: Un estudio empírico aplicando una metodología de datos de panel. Gestión y política pública 2014, 23, 185–218. [Google Scholar]
- Piotrowska, A.; Czerpak, R. Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine-and phenylurea-type cytokinins. Acta Physiologiae Plantarum 2009, 31, 573–585. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Gwak, R.; Kang, M.; Shim, T. S.; Cho, S. Regenerative Astaxanthin Extraction from a Single Microalgal (Haematococcus pluvialis) Cell Using a Gold Nano-Scalpel. ACS Applied Materials & Interfaces 2015, 7, 22702–22708. [Google Scholar]
- Raman, V.; Ravi, S. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiologiae Plantarum 2011, 33, 1043–1049. [Google Scholar] [CrossRef]
- Ranjbar, R.; Inoue, R.; Shiraishi, H.; Katsuda, T.; Katoh, S. High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochemical Engineering Journal 2008, 39, 575–580. [Google Scholar] [CrossRef]
- Rasheed, N. The Production Of Astaxanthin In Freshwater Algae, Haematococcus Pluvialis with Lead Nanopparticle Exposure. INTI INTERNATIONAL UNIVERSITY.
- Rasid 2018, E. N. B. I.; Mohamad, S. E.; Jamaluddin, H.; Salleh, M. M. Screening factors influencing the production of astaxanthin from freshwater and marine microalgae. Applied biochemistry and biotechnology 2014, 172, 2160–2174. [Google Scholar] [CrossRef] [PubMed]
- Rastar, M.; Hosseini Shekarabi, S.; Shamsaie Mehrgan, M.; Sabz, S. Effects of iron and zinc concentrations on growth performance and biochemical composition of Haematococcus pluvialis: A comparison between nanoparticles and their corresponding metals bulks. Journal of Algal Biomass Utilization 2018, 9, 59–67. [Google Scholar]
- Rastar, M.; Shekarabi, S. P. H.; Mehrgan, M. S.; Sabzi, S. Effects of iron and zinc concentrations on growth performance and biochemical composition of Haematococcus pluvialis: a comparison between nanoparticles and their corresponding metals bulks.
- Romanenko, K.; Kosakovskaya, I.; Romanenko, P. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes. International Journal on Algae 2016, 18. [Google Scholar] [CrossRef]
- Saha, S. K.; Mchugh, E.; Hayes, J.; Moane, S.; Walsh, D.; et al. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresource Technology 2013, 128, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Sarada, R.; Bhattacharya, S.; Bhattacharya, S.; Ravishankar, G. A response surface approach for the production of natural pigment astaxanthin from green alga, Haematococcus pluvialis: effect of sodium acetate, culture age, and sodium chloride. Food Biotechnology 2002, 16, 107–120. [Google Scholar] [CrossRef]
- Sarada, R.; Tripathi, U.; Ravishankar, G. A. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochemistry 2002, 37, 623–627. [Google Scholar] [CrossRef]
- Sarada, R.; Vidhyavathi, R.; Usha, D.; Ravishankar, G. A. An Efficient Method for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry 2006, 54, 7585–7588. [Google Scholar] [CrossRef]
- Shah, M. M. R.; Liang 7588, Y.; Cheng, J. J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science 2016, 7. [Google Scholar] [CrossRef]
- Shang, M.; Ding, W.; Zhao, Y.; Xu, J.-W.; Zhao, P.; et al. Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole. Journal of Biotechnology 2016, 236, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Steiger, S.; Sandmann, G. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnology letters 2004, 26, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, J.; Linden, H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiology 2001, 125, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, J.; Linden, H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant molecular biology 2003, 52, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kong, Q.; Geng, Z.; Duan, L.; Yang, M.; et al. Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresource Technology 2015, 186, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y. M. The Effects of Ag Nanopaticles to the Production of Astaxanthin Algae with Different pH and Salinity Growth Conditions. INTI International University.
- Thinakren 2016, B. QUANTIFICATION OF ASTAXANTHIN PRODUCTION BY Haematococcus pluvialis INDUCED BY COPPPER NANOPARTICLES. INTI INTERNATIONAL UNIVERSITY.
- Tripathi 2018, U.; Sarada, R.; Ravishankar, G. A. Effect of culture conditions on growth of green alga — Haematococcus pluvialis and astaxanthin production. Acta Physiologiae Plantarum 2002, 24, 323–329. [Google Scholar] [CrossRef]
- Vance, B. D. Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05)(Chlorellaceae). Journal of Plant Growth Regulation 1987, 5, 169–173. [Google Scholar] [CrossRef]
- Verwaal, R.; Wang, J.; Meijnen, J. P.; Visser, H.; Sandmann, G.; et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 2007, 73. [Google Scholar] [CrossRef]
- Vidhyavathi, R.; Venkatachalam, L.; Sarada, R.; Ravishankar, G. A. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of experimental botany 2008, 59, 1409–1418. [Google Scholar] [CrossRef]
- Vijay, A. K.; Prabha, S.; Thomas, J.; Kurian, J. S.; George, B. Effect of auxin and its synthetic analogues on the biomass production and biochemical composition of freshwater microalga Ankistrodesmus falcatus CMSACR1001. Journal of Applied Phycology 2020, 32, 3787–3797. [Google Scholar] [CrossRef]
- Wang, B.; Zarka, A.; Trebst, A.; Boussiba, S. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. Journal of phycology 2003, 39, 1116–1124. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.-H.; Kim, S.-W. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Marine drugs 2014, 12, 4810–4832. [Google Scholar] [CrossRef]
- Wang, J.; Han, D.; Sommerfeld, M. R.; Lu, C.; Hu, Q. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. Journal of Applied Phycology 2013, 25, 253–260. [Google Scholar] [CrossRef]
- Wang, J.; Sommerfeld, M. R.; Lu, C.; Hu, Q. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. ALGAE 2013, 28, 193–202. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Gong, Y. The effects of arachidonic acid (AA) on the cell growth and astaxanthin content in alge Haematococcus pluvialis. Fisheries Science (Dalian) 2010, 29, 142–146. [Google Scholar]
- Wayama, M.; Ota, S.; Matsuura, H.; Nango, N.; Hirata, A.; et al. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLOS ONE 2013, 8, e53618. [Google Scholar] [CrossRef]
- Wong, L. S.; Batumalai, T.; Cheng, W. H.; Ong, G. H. The Effect of Copper Nanoparticle to Astaxanthin Content in Microalgae.
- Xi, T.; Kim, D. G.; Roh, S. W.; Choi, J.-S.; Choi, Y.-E. Enhancement of astaxanthin production using Haematococcus pluvialis. Applied Microbiology and Biotechnology 2016, 100, 6231–6238. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Chen, B.; Sun, X.; Qu, K.; Ma, F.; et al. Interaction of TiO 2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Science of The Total Environment 2015, 508, 525–533. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Zhang, H.; Sun, Q.; Liu, R.; et al. Rapid and Efficient Conversion of All-E-astaxanthin to 9Z- and 13Z-Isomers and Assessment of Their Stability and Antioxidant Activities. Journal of agricultural and food chemistry 2017, 65, 818–826. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, B.; Lee, J. Astaxanthin structure, metabolism, and health benefits. J. Hum. Nutr. Food Sci 2013, 1, 1–1003. [Google Scholar]
- Yu, X.; Niu, X.; Zhang, X.; Pei, G.; Liu, J.; et al. Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. Algal research 2015, 11, 284–293. [Google Scholar] [CrossRef]
- Zhang, B. Y.; Geng, Y. H.; Li, Z. K.; Hu, H. J.; Li, Y. G. Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 2009, 295, 275–281. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Liu, J. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiology and Biochemistry 2016, 107, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, J.; Wang, J.; Liu, T. Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresource Technology 2014, 158, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shang, M.; Xu, J.-W.; Zhao, P.; Li, T.; et al. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Process Biochemistry 2015, 50, 2072–2077. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, H.; Li, X.; Geng, S.; Ning, D.; et al. Physiological and metabolomics analyses reveal the roles of fulvic acid in enhancing the production of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. Journal of agricultural and food chemistry 2019, 67, 12599–12609. [Google Scholar] [CrossRef] [PubMed]
- Zhekisheva, M.; Boussiba, S.; Khozin-Goldberg, I.; Zarka, A.; Cohen, Z. ACCUMULATION OF OLEIC ACID IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) UNDER NITROGEN STARVATION OR HIGH LIGHT IS CORRELATED WITH THAT OF ASTAXANTHIN ESTERS 1. Journal of phycology 2002, 38, 325–331. [Google Scholar] [CrossRef]
- Zhekisheva, M.; Zarka, A.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. INHIBITION OF ASTAXANTHIN SYNTHESIS UNDER HIGH IRRADIANCE DOES NOT ABOLISH TRIACYLGLYCEROL ACCUMULATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE)1. Journal of phycology 2005, 41, 819–826. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).