Submitted:
22 January 2023
Posted:
26 January 2023
You are already at the latest version
Abstract

Keywords:
Introduction
Bone healing
Ethnopharmacological use of medicinal plants in osteointegration
Medicinal plants the bone repair process
Dysphania ambrosioides
Piper sarmentosum
Cissus quadrangularis
Cannabis sativa
Ricinus communis
Ulmus wallichiana
Bixa orellanais
Pueraria Lobata
Radix salvia miltiorrhiza
Peperomia pellucida
Plant-based products
| References | Active compounds | Scientific name | Family | Popular name | Plant part | Study Model | Route of use | action mechanism | ||
|---|---|---|---|---|---|---|---|---|---|---|
| [28,38,105] | Flavonoids and monoterpenes | Dysphania ambrosioides | Chenopodiaceae | Mastruz; St. Mary's Wort | Leaves | In vivo | Local/ Graft |
Osteogenesis activation, increased collagen deposition and bone alkaline phosphatase levels regulation. | ||
|
[41,47,103,107,108,109] |
Flavonoid (Naringenin) |
Piper sarmentosum |
Piperaceae |
Daun Kadok |
Leaves |
In vivo |
Oral |
ROS reduction and oxidative stress prevention during the bone healing process. Acts on bone estrogenic receptors, stimulating bone mineralization and increased endochondral ossification. |
||
|
[56,57,58,120] |
Ascorbic acid, carotene A, ketosteroid, calcium, triterpenoids and β-sitosterol |
Cissus quadrangularis |
Vitaceae |
Hadjod |
Leaves |
In vivo/ clinical |
Oral |
Stimulating the proliferation and differentiation of MSCs, as well as promoting bone neoformation through the Wnt/LRP5-B-Creatin signaling pathway for the pre-osteoblast’s formation. Performance in bone estrogenic receptors stimulating ossification and early remodeling. Stimulates bone metabolism by increasing the uptake of calcium, sulfur and strontium minerals by osteoblasts in fracture healing. |
||
|
[64,111] |
Cannabidiol, Δ9-tetrahydrocannabinol |
Cannabis Sativa |
Moraceae |
Marijuana |
Leaves |
In vitro and in vivo |
Culture cell Local/graft Intraperitoneal |
Stimulating the mRNA expression of enzyme Plod1 and Plod2 in primary osteoblast cultures, which in turn is involved in cross-linking and stabilization of collagenous extracellular matrix. They mimic endocannabidioids, activating CB2 receptors, expressed by osteoblasts and osteoclasts, thus attenuating bone loss induced by estrogen depletion due to osteoclasts suppression by suppressing RANKL expression . |
||
|
[70,71,112,113] |
Ricinoleic Acid (Polyurethane) |
Ricinus communis |
Euphorbiaceae |
Palma Christi, tick, castor, tartago |
Seeds |
In vivo |
Local/Graft |
Polyurethane promotes fibroblast neoformation, progressively replacing the bone inside and around the biomaterial pores, in absence of late inflammatory reaction. Increased RUNX-2 expression and greater differentiation of osteoblasts. |
||
|
[45,73] |
Flavonoids (quercetin and naringenin). |
Ulmus wallichiana |
Ulmaceae |
Chamormou |
Stem bark |
In vitro and in vivo |
Culture cell Local/graft Oral |
Anabolic effect and AhR transactivation. It mediates the proliferation, differentiation and survival of osteoblasts and bone marrow cells by acting on estrogen receptors. |
||
|
[76] |
Norbixin (polystyrene) |
Bixa orellana |
Bixaceae |
Urucum |
Seeds |
In vivo |
Local/graft |
Osteoconductive activity, stimulating bone cells through adequate surface roughness, proving to be efficient in osteoblasts proliferation. |
||
|
[85,114,115,116,117] |
Flavonoids (salvianolic acid B) |
Radix salvia miltiorrhiza |
Lamiaceae |
Danshen |
isolated compound |
In vitro in vivo |
Culture cell Local/graft Local/graft intralesional |
Bone remodeling by gene expression of alkaline phosphatase, osteocalcin, osteoprotegerin and RANKL. Increased angiogenesis by positively regulating VEGF and VEGF-R2 gene expression. Stimulates osteogenesis through direct/indirect regulation of RANKL/OPG, BMP, Wnt/β-catenin, FoxO-3 and KLF1517 signaling pathways. |
||
| [83,84] | Isoflavonoids (Puerarina) |
Pueraria lobata |
Fabaceae | Gegen | Root | In vitro e in vivo | Culture cell Local/graft |
Increased VEGF mRNA expression and increased alkaline phosphatase activity related to osteoblastic activity. |
||
| [4,93] | Asperosaponin VI and oleanolic acid Ginsenoside Rg1 and Rb1 Yellow hydroxyisafflor A Kaempferol Emodina Rhein Geniposide * Not detected |
Radix Dipsaci Rhizoma Notoginseng Flos Carthami Rhizoma Rhei Fructus Gardeniae Ramulus Sambucus Williamsii |
Dipsacaceae Caprifoliaceae Araliaceae Compositae Polygonaceae Rubiaceae |
Xu Duan Gui Zhi Hong Hua Da huang Zhi Zi * Not detected |
Leaves and root | In vitro and in vivo | Culture cell Topic |
Activation of osteogenesis. Nitric oxide inhibition, angiogenesis promotion and bone cell lines proliferation. Increased expression of alkaline phosphatase and osteocalcin. Anti-inflammatory activity, suppressing the production of NO and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6). |
||
|
[89] |
Minerals (calcium, phosphorus, magnesium, sodium and potassium) flavonoids |
Peperomia pellucida |
Piperaceae |
Tortoise herb, little heart, tangon-tangon, peperomia, garrapatilla. |
Whole plant |
In vivo |
Oral |
Contributes to osteoid mineralization during bone formation, accelerates the migration and proliferation of osteogenic cells, increasing the quantity and activity of osteoblasts. |
||
| [95,96] |
Terpenes, phenolic compounds, carotenoids, Isoflavones, isoliquiritin, diarylheptanoids and kaempferide, thymol, carvacrol, hyperforin, Menthol |
Glycyrrhiza glabra Alpinia officinarum Thymus serpyllum Syzygium aromaticum Hypericum perforatum Vitis vinifera Urtica angustifolia Mentha arvensis |
Fabaceae Zingiberaceae Lamiaceae Myrtaceae Hypericaceae Vitaceae Urticaceae Lamiaceae |
Mecsina hemostopper | Whole plant | In vitro and In vivo | Culture cell Local/graft intralesional |
Histologic assessment showed significantly more calcified tissue areas and significantly more osteoblast cells, was found to be an effective agent in increasing cell proliferation and providing more qualified bone formation. | ||
Conclusion
Conflict of Interest
Abbreviations
| ROS - reactive oxygen species MSCs - mesenchymal stem cells Wnt/LRP5-B – Wnt signaling pathway associated with lipoprotein receptor-related protein 5-beta FoxO-3 signaling pathway Signaling pathway KLF1517 mRNA - messenger ribonucleic acid Plod1 enzyme CB – cannabidioids RANKL - receptor activator of nuclear factor-kappa B ligand RUNX-2 - transcription factor 2 AhR - aryl hydrocarbon receptor VEGF - vascular endothelial growth factor VEGF-R2 - vascular endothelial growth factor receptor 2 OPG – osteoprotegerin BMP - bone morphogenetic protein; NO - nitric oxide TNF-α - tumor necrosis factor-α IL-1β - interleukin 1-beta IL-6/11/18 - interleukin-6,11,18 HIV RENISUS - National Register of National Health System Interest Plants ER - estrogen receptor Ps - Piper sarmentosum H2O2 - hydrogen peroxide MSC - mesenchymal stem cells Cs - Cannabis sativa THC - Tetrahydrocannabinol CBD - Cannabidiol CPR - Polyurethane NCG - naringenin-C-glucoside Q - quercetin analog PBM - photobiomodulation PSNC - polystyrene membrane norbixin and collagen SEM - scanning electron microscopy ASB - Salvianolic Acid B UMR-106 Osteoblast-like cell culture HUVEC - human umbilical vein endothelial cells |
References
- Cooper C, Cole Z, Holroyd C, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos int. 2011, 22, 1277. [Google Scholar] [CrossRef] [PubMed]
- Buza III JA, Einhorn T. Bone healing in 2016. Clin Cases Miner Bone Metab. 2016, 13, 101. [Google Scholar]
- Wickramasinghe, Maduni L. , George J. Dias, and Kariyawasam Majuwana Gamage Prasanna Premadasa. "A novel classification of bone graft materials." Journal of Biomedical Materials Research Part B: Applied Biomaterials 2022, 110, 1724–1749.
- Peng LH, Ko CH, Siu SW, et al. In vitro & in vivo assessment of a herbal formula used topically for bone fracture treatment. J Ethnopharmacol. 2010, 131, 282–289. [Google Scholar]
- Singh, V. Medicinal plants and bone healing. Natl J. Maxillofac Surg. 2017, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Ngueguim FT, Khan MP, Donfack JH, et al. Evaluation of Cameroonian plants towards experimental bone regeneration. J Ethnopharmacol. 2012, 141, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Zhao S, Baik O-D, Choi YJ, Kim S-M. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Crit Rev. De Alimentos Sci Nutr. 2014, 54, 1283–1297. [Google Scholar] [CrossRef] [PubMed]
- Cox, PA. Saving the ethnopharmacological heritage of Samoa. J Ethnopharmacol. 1993, 38, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol. 2002, 76, 8118–8123. [Google Scholar] [CrossRef]
- Fang, Y. A retrospective study of postoperative complications after fracture repair in dogs and cats, with focus on fractures in the radius and ulna. 2018.
- Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015, 11, 45. [Google Scholar] [CrossRef]
- Kubosch EJ, Bernstein A, Wolf L, Fretwurst T, Nelson K, Schmal H. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. "BMC Musculoskelet. Disord. 2016, 17, 77. [Google Scholar]
- Kostenuik P, Mirza FM. Fracure healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res®. 2017, 35, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Morshed, S. Current options for determining fracture union. Adv Med. 2014, 2014. [Google Scholar] [CrossRef]
- Peters A, Schell H, Bail HJ, et al. Standard bone healing stages occur during delayed bone healing, albeit with a different temporal onset and spatial distribution of callus tissues. Histol Histopathol. 2010, 25, 1149–1162. [Google Scholar]
- Phillips, A. Overview of the fracture healing cascade. Injury. 2005, 36, S5–S7. [Google Scholar] [CrossRef]
- Harwood PJ, Ferguson DO. (ii) An update on fracture healing and non-union. Orthop Trauma. 2015, 29, 228–242. [Google Scholar] [CrossRef]
- Harwood PJ, Newman JB, Michael AL. (ii) An update on fracture healing and non-union. Orthop Trauma. 2010, 24, 9–23. [Google Scholar] [CrossRef]
- Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011, 42, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007, 38, S11–S25. [Google Scholar] [CrossRef]
- Yang Y, Chin A, Zhang L, Lu J, Wong RWK. The role of traditional Chinese medicines in osteogenesis and angiogenesis. Phytother Res. 2014, 28, 1–8. [Google Scholar] [CrossRef]
- Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016, 91, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Melnyk M, Henke T, Claes L, Augat P. Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg. 2008, 128, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Heckman JD, McQueen MM, Ricci WM, Tornetta P, McKee MD. Rockwood and Greenʹs fractures in adults: Wolters Kluwer Health; 2015.
- Holstein JH, Karabin-Kehl B, Scheuer C, et al. Endostatin inhibits callus remodeling during fracture healing in mice. J Orthop Res. 2013, 31, 1579–1584. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Pegu R, Tamuli A, Teron R. Assessment of Human-Wildlife Conflicts in Poba Reserved Forest, Dhemaji District, Assam (INDIA). Amb Sci. 2014, 1, 36–46. [Google Scholar] [CrossRef]
- Neto VFP, Ribeiro RM, Morais CS, et al. Chenopodium ambroisioides in the repair of fractures in rabbits. Int J Pharmacol. 2015, 11, 732–737. [Google Scholar] [CrossRef]
- Kasote D, Ahmad A, Viljoen A. Proangiogenic potential of medicinal plants in wound healing. Evid Based Complement Alternat Med: Elsevier; 2015, 149-164.
- Ahmad SU, Shuid AN, Mohamed IN. Labisia pumila improves wound healing process in ovariectomized rat model. Bangladesh J. Pharmacol. 2018, 13, 106–113. [Google Scholar] [CrossRef]
- Al-Waili, N. Mixing two different propolis samples potentiates their antimicrobial activity and wound healing property: A novel approach in wound healing and infection. Vet World. 2018, 11, 1188. [Google Scholar] [CrossRef] [PubMed]
- Morand D, Davideau JL, Clauss F, Jessel N, Tenenbaum H, Huck O. Cytokines during periodontal wound healing: potential application for new therapeutic approach. Oral Dis. 2017, 23, 300–311. [Google Scholar] [CrossRef]
- Lorenzi H, Matos FJ. Plantas medicinais no Brasil: nativas e exóticas 2002.
- Grassi, LT. Chenopodium ambrosioides L. Erva de Santa Maria (amaranthaceae): estudo do potencial anti-inflamatório, antinociceptivo e cicatrizante. 2011.
- Pinheiro Neto V, Araújo B, Guerra P, Borges M, Borges A. Efeito do cataplasma das folhas de mastruz (Chenopodium ambrosioides) na reparação de tecidos moles e ósseo em rádio de coelho. J Bras Fitomed. 2005, 3, 62–66. [Google Scholar]
- Baptistel A, Coutinho J, Lins Neto E, Monteiro J. Plantas medicinais utilizadas na Comunidade Santo Antônio, Currais, Sul do Piauí: um enfoque etnobotânico. Rev. bras. plantas med. 2014, 16, 406–425. [Google Scholar] [CrossRef]
- Marmitt DJ, Rempel C, Goettert MI, Silva AdC. Plantas medicinais da RENISUS com potencial anti-inflamatório: revisão sistemática em três bases de dados científicas. 2015.
- Neto VFP, Ribeiro RM, Morais CS, et al. Chenopodium ambrosioides as a bone graft substitute in rabbits radius fracture. BMC Complement Altern. Med. 2017, 17, 350. [Google Scholar]
- Khedgikar V, Gautam J, Kushwaha P, et al. A standardized phytopreparation from an Indian medicinal plant (Dalbergia sissoo) has antiresorptive and bone-forming effects on a postmenopausal osteoporosis model of rat. Menopause. 2012, 19, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Soundarya SP, Sanjay V, Menon AH, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol. 2018, 110, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Pang JL, Ricupero DA, Huang S, et al. Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem Pharmacol.. 2006, 71, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Burkill, IH. A dictionary of the economic products of the Malay Peninsula. A Dictionary of the Economic Products of the Malay Peninsula. 1966, 2. [Google Scholar]
- Khatun MA, Harun-Or-Rashid M, Rahmatullah M. Scientific validation of eight medicinal plants used in traditional medicinal systems of Malaysia: a review. Am Eurasian J Sustain. Agric. 2011, 5, 67–75. [Google Scholar]
- Ariffin SHZ, Omar WHHW, Ariffin ZZ, Safian MF, Senafi S, Wahab RMA. Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line. Cancer Cell Int. 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Swarnkar G, Sharan K, Siddiqui JA, et al. A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol. 2012, 165, 1526–1542. [Google Scholar] [CrossRef]
- Subramaniam V, Adenan MI, Ahmad AR, Sahdan R. Natural antioxidants: piper sarmentosum (Kadok) and morinda elliptica (Mengkudu). Malays J Nutr. 2003, 9, 41–51. [Google Scholar]
- Estai MA, Suhaimi FH, Das S, et al. Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: a radiological study. Clinics. 2011, 66, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Wang Q, Huo X, Wang J, et al. Rutin prevents the ovariectomy-induced osteoporosis in rats. Eur Rev Med Pharmacol Sci. 2017, 21, 1911–1917. [Google Scholar]
- Sathyapalan T, Aye M, Rigby AS, et al. Soy reduces bone turnover markers in women during early menopause: a randomized controlled trial. J Bone Miner Res. 2017, 32, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Geissler PW, Harris SA, Prince RJ, et al. Medicinal plants used by Luo mothers and children in Bondo district, Kenya. J Ethnopharmacol. 2002, 83, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Attawish A, Chavalittumrong P, Chivapat S, Chuthaputti A, Rattanajarasroj S, Punyamong S. Subchronic toxicity of Cissus quadrangularis Linn. Songklanakarin J Sci Technol. 2002, 24, 39–51. [Google Scholar]
- Rao G, Annamalai T, Mukhopadahyay T, Machavolu S, Lakshmi M. Chemical constituents and melanin promotion activity of Cissus quadrangularis Linn. Res J Chem Sci. 2011, 1, 25–29. [Google Scholar]
- Ghouse MMS. A pharmacognostical review on cissus quadrangularis linn. Int J Res. 2015, 28. [Google Scholar]
- Sawangjit R, Puttarak P, Saokaew S, Chaiyakunapruk N. Efficacy and safety of Cissus Quadrangularis L. in clinical use: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2017, 31, 555–567. [Google Scholar] [CrossRef]
- Potu BK, Bhat KM, Rao MS, et al. Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics. 2009, 64, 993–998. [Google Scholar] [CrossRef]
- Singh V, Singh N, Pal U, Dhasmana S, Mohammad S, Singh N. Clinical evaluation of cissus quadrangularis and moringa oleifera and osteoseal as osteogenic agents in mandibular fracture. Natl J. Maxillofac Surg. 2011, 2, 132. [Google Scholar] [CrossRef]
- Singh N, Singh V, Singh R, et al. Osteogenic potential of cissus qudrangularis assessed with osteopontin expression. Natl J. Maxillofac Surg. 2013, 4, 52. [Google Scholar] [CrossRef]
- de Carvalho CR, Franco PLC, Eidt I, Hoeller AA, Walz R. Canabinoides e Epilepsia: potencial terapêutico do canabidiol. VITTALLE-Revista de Ciências da Saúde. 2017, 29, 54–63. [Google Scholar] [CrossRef]
- Gyles, C. Marijuana for pets? Can Vet J. 2016, 57, 1215. [Google Scholar]
- Landa L, Sulcova A, Gbelec P. The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review. Vet Med. 2016, 61. [Google Scholar]
- Schier ARdM, Ribeiro NPdO, Hallak JEC, Crippa JAS, Nardi AE, Zuardi AW. Cannabidiol, a Cannabis sativa constituent, as an anxiolytic drug. Braz J Psychiatry. 2012, 34, 104–110. [Google Scholar] [CrossRef]
- Bab I, Zimmer A, Melamed E. Cannabinoids and the skeleton: from marijuana to reversal of bone loss. Ann Med. 2009, 41, 560–567. [Google Scholar] [CrossRef]
- Kogan NM, Melamed E, Wasserman E, et al. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J Bone Miner Res. 2015, 30, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Napimoga MH, Benatti BB, Lima FO, et al. Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol. 2009, 9, 216–222. [Google Scholar] [CrossRef]
- Nogueira-Filho GdR, Cadide T, Rosa BT, et al. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implante Dent. 2008, 17, 461–470. [Google Scholar] [CrossRef]
- Kensa V, Yasmin S. Phytochemical screening and antibacterial activity on Ricinus communis L. Plant Sci Feed. 2011, 1, 167–173. [Google Scholar]
- Rana M, Dhamija H, Prashar B, Sharma S. Ricinus communis L.—a review. Int J Pharmtech Res. 2012, 4, 1706–1711. [Google Scholar]
- Abdul WM, Hajrah NH, Sabir JS, et al. Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment. Asiático Pac J Trop Med. 2018, 11, 177. [Google Scholar] [CrossRef]
- Nóbrega FS, Selim MB, Arana-Chavez VE, Correa L, Ferreira MP, Zoppa AL. Histologic and immunohistochemical evaluation of biocompatibility of castor oil polyurethane polymer with calcium carbonate in equine bone tissue. Am J Vet Res. 2017, 78, 1210–1214. [Google Scholar] [CrossRef]
- Del Carlo RJ, Kawata D, Viloria MIV, et al. Polímero derivado de mamona acrescido de cálcio, associado ou não à medula óssea autógena na reparação de falhas ósseas. Cienc Rural. 2003, 33, 1081–1088. [Google Scholar] [CrossRef]
- Arya K, Sharma D, Kumar B. Validation and quality determination of an ethnobotanical lead for osteogenic activity isolated from Ulmus wallichiana Planch.: A traditional plant for healing fractured bones. 2011.
- Sharan K, Mishra JS, Swarnkar G, et al. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res. 2011, 26, 2096–2111. [Google Scholar] [CrossRef]
- Elias M, Schroth G, Macêdo J, Mota M, D'Angelo S. Mineral nutrition, growth and yields of annatto trees (Bixa orellana) in agroforestry on an Amazonian Ferralsol. Exp. Agric. 2002, 38, 277–289. [Google Scholar] [CrossRef]
- Shilpi JA, Taufiq-Ur-Rahman M, Uddin SJ, Alam MS, Sadhu SK, Seidel V. Preliminary pharmacological screening of Bixa orellana L. leaves. J Ethnopharmacol. 2006, 108, 264–271. [Google Scholar] [CrossRef]
- Alves AMM, de Miranda Fortaleza LM, Maia Filho ALM, et al. Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm). Lasers Med Sci. 2018, 33, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Capella S, Tillmann M, Félix A, et al. Potencial cicatricial da Bixa orellana L. em feridas cutâneas: estudo em modelo experimental. Arq. Bras. Med. Vet. Zootec. 2016, 68, 104–112. [Google Scholar] [CrossRef]
- Soares LGP, Magalhaes Junior EBd, Magalhaes CAB, Ferreira CF, Marques AMC, Pinheiro ALB. New bone formation around implants inserted on autologous and xenografts irradiated or not with IR laser light: a histomorphometric study in rabbits. Braz Dent J. 2013, 24, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro ALB, Santos NRS, Oliveira PC, et al. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci. 2013, 28, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab. 2003, 21, 268–275. [Google Scholar] [CrossRef]
- Yasuda T, Endo M, Kon-no T, Kato T, Mitsuzuka M, Ohsawa K. Antipyretic, analgesic and muscle relaxant activities of pueraria isoflavonoids and their metabolites from Pueraria lobata Ohwi—a traditional Chinese drug. Biol Pharm Bull. 2005, 28, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Si-Yuan Y, SHENG T, Lian-Qi L, et al. Puerarin prevents bone loss in ovariectomized mice and inhibits osteoclast formation in vitro. Chin J Nat Med. 2016, 14, 265–269. [Google Scholar]
- Zhang M-y, Qiang H, Yang H-q, Dang X-q, Wang K-z. In vitro and in vivo effects of puerarin on promotion of osteoblast bone formation. Chin J Integr Med. 2012, 18, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Lee D-H, Kim I-K, Cho H-Y, Seo J-H, Jang J-M, Kim J. Effect of herbal extracts on bone regeneration in a rat calvaria defect model and screening system. J Korean Assoc Oral Maxillofac Surg. 2018, 44, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wong R, Rabie A. Effect of Salvia miltiorrhiza extract on bone formation. J Biomed Mater Res. Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2008, 85, 506–512. [Google Scholar]
- O’Brien KA, Ling S, Abbas E, et al. A chinese herbal preparation containing radix salviae miltiorrhizae, radix notoginseng and borneolum syntheticum reduces circulating adhesion molecules. Evid Based Complement Alternat Med. 2011, 2011. [Google Scholar]
- Majumder P, Abraham P, Satya V. Ethno-medicinal, Phytochemical and Pharmacological review of an amazing medicinal herb Peperomia pellucida (L.) HBK. Res. j. pharm. biol. chem. sci. 2011, 2, 358–364. [Google Scholar]
- Akinnibosun H, Akinnibosun F, German B. Antibacterial activity of aqueous and ethanolic leaf extracts of Peperomia pellucida (l.) HB & K.(piperaceae) on three gram-negative bacteria isolates. Sci world j. 2008, 3. [Google Scholar]
- Florence NT, Huguette STS, Hubert DJ, et al. Aqueous extract of Peperomia pellucida (L.) HBK accelerates fracture healing in Wistar rats. BMC Complement Altern Med. 2017, 17, 188. [Google Scholar]
- Doblaré M, Garcıa J, Gómez M. Modelling bone tissue fracture and healing: a review. Eng Fract Mech. 2004, 71, 1809–1840. [Google Scholar] [CrossRef]
- Su Y, Wang Q, Wang C, Chan K, Sun Y, Kuang H. The treatment of Alzheimer's disease using Chinese medicinal plants: from disease models to potential clinical applications. J ethnopharmacol. 2014, 152, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Commission, CP. People's Republic of China Pharmacopoeia 2015 Edition: China Medical Science and Technology Press, Beijing, China; 2015.
- Siu W-S, Ko C-H, Lam K-W, et al. Evaluation of a topical herbal agent for the promotion of bone healing. Evid Based Complement Alternat Med. 2015, 2015. [Google Scholar]
- Tumer, Mehmet Kemal, Mustafa Çiçek. "Investigation of Immunological Differences in Mecsina Hemostopper©, Ankaferd Blood Stopper® and Tranexamic Acid Used as Haemostatic Agents with Cell Culture Study." Medical Journal of Suleyman Demirel University 2018, 25.
- Özyurt, Anıl, et al. "Effects of low-level laser therapy with a herbal extract on alveolar bone healing." Journal of Oral and Maxillofacial Surgery 2018, 76, 287.e1.
- Aydin, Pelin, Sıdıka Sinem Akdeniz, and Eda Yilmaz Akcay. "Histologic Evaluation of the Effect of Mecsina Hemostopper on Bone Regeneration for Critical-Size Defects." International Journal of Oral & Maxillofacial Implants 2022, 37.
- Debnath B, Debnath A, Shilsharma A, Paul C. Ethnomedicinal knowledge of Mog and Reang communities of south district of Tripura, India. Indian J Adv Plant Res. 2014, 1, 49–54. [Google Scholar]
- Sreeramulu N, Suthari S, Ragan A, Raju VS. Ethno-botanico-medicine for common human ailments in Nalgonda and Warangal districts of Telangana, Andhra Pradesh, India. Ann Plant Sci. 2013, 2, 220–229. [Google Scholar]
- Padal S, Ramakrishna H, Devender R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int J Med Arom Plant. 2012, 2, 453–459. [Google Scholar]
- Sharma C, Kumari T, Arya K. Ethnopharmacological survey on bone healing plants with special references to Pholidota articulata and Coelogyne cristata (Orchidaceae) used in folk tradition of Kumaon, Uttarakhand, India. Int J Pharma Res Health Sci. 2014, 2, 185–190. [Google Scholar]
- Upadhya V, Hegde HV, Bhat S, Hurkadale PJ, Kholkute S, Hegde G. Ethnomedicinal plants used to treat bone fracture from North-Central Western Ghats of India. J ethnopharmacol. 2012, 142, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Rahmatullah M, Khatun Z, Saha S, et al. Medicinal plants and formulations of Tribal healers of the Chekla clan of the Patro tribe of Bangladesh. J Altern Complement Med. 2014, 20, 3–11. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Castro KN, Wolschick D, Leite RRS, de Andrade IM, Magalhães JA, Mayo SJ. Ethnobotanical and ethnoveterinary study of medicinal plants used in the municipality of Bom Princpio do Piau, Piau, Brazil. J Med Plant Res. 2016, 10, 318–330. [Google Scholar] [CrossRef]
- Carag H, Buot Jr I. A checklist of the orders and families of medicinal plants in the Philippines. Sylvatrop. 2017, 27, 49–59. [Google Scholar]
- Penha ESd, Lacerda-Santos R, Carvalho MGFd, Oliveira PTd. Effect of Chenopodium ambrosioides on the healing process of the in vivo bone tissue. Microsc Res Tech. 2017, 80, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Estai MA, Soelaiman IN, Shuid AN, Das S, Ali AM, Suhaimi FH. Histological changes in the fracture callus following the administration of water extract of Piper sarmentosum (Daun Kadok) in estrogen-deficient rats. Iran J Med Sci. 2011, 36, 281. [Google Scholar]
- Estai MA, Suhaimi F, Shuid AN, Das S, Abdullah S, Soelaiman I-N. Biomechanical evaluation of fracture healing following administration of Piper sarmentosum in ovariectomised rats. Afr J Pharm Pharmacol. 2012, 6, 144–147. [Google Scholar]
- Mohamad S, Shuid AN, Mohamed N, et al. The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics. 2012, 67, 1077–1085. [Google Scholar] [CrossRef]
- Jalil A, Azri M, Shuid AN, Muhammad N. Role of medicinal plants and natural products on osteoporotic fracture healing. Evid Based Complement Alternat Med. 2012, 2012. [Google Scholar]
- Rao MS, Potu B, Swamy N, Kutty G. Cissus quadrangularis plant extract enhances the development of cortical bone and trabeculae in the fetal femur. Pharmacologyonline. 2007, 3, 190–202. [Google Scholar]
- Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A. Endocannabinoids and the regulation of bone metabolism. J. Neuroendocrinol. 2008, 20, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Laureano Filho JR, Andrade ES, Albergaria-Barbosa JR, Camargo IB, Garcia RR. Effects of demineralized bone matrix and a ‘Ricinus communis’ polymer on bone regeneration: a histological study in rabbit calvaria. J Oral Sci. 2009, 51, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Sousa TPTd, Costa MSTd, Guilherme R, et al. Polyurethane derived from Ricinus Communis as graft for bone defect treatments. Polímeros. 2018, 28, 246–255. [Google Scholar] [CrossRef]
- Chin A, Yang Y, Chai L, Wong RW, Rabie ABM. Effects of medicinal herb salvia miltiorrhiza on osteoblastic cells in vitro. J Orthop Res. 2011, 29, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Wenden A, Yang Y, Chai L, Wong RW. Salvia miltiorrhiza induces VEGF expression and regulates expression of VEGF receptors in osteoblastic cells. Phytother Res. 2014, 28, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Lin S, Cui L, Chen G, et al. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials. 2019, 196, 109–121. [Google Scholar] [CrossRef]
- Liu Y, Jia Z, Akhter MP, et al. Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomed-nanotechnol. 2018, 14, 2271–2282. [Google Scholar] [CrossRef]
| Scientific Name | Family | Plant part | Local | Country | References |
|---|---|---|---|---|---|
|
Merremia umbellate (L.) |
Convolvulaceae | Leaves | Tripura | India |
[97] |
|
Microcos paniculata (L.) |
Tilliaceae | Leaves | Tripura | India | [97] |
| Cissus quadrangulares (Linn.) | Vitaceae | Tendrils | Dhemaji | India | [27] |
|
Alangium salvifolium (L. f.) |
Alangiaceae | Bark / Root | Nalgonda e Warangal | India | [98] |
| Acampe praemorsa (Roxb) | Orchidaceae | * | Visakhapatnam | India | [99] |
| Desmodium triflorum (L.) | Moraceae | Plant | Visakhapatnam | India | [99] |
| Ficus benghalensis (L.) | Fabaceae | Munta mandu | India | [99] | |
| Tridax procumbens (L.) | Asteraceae | Leaves | Gaddichamanthi | India | [99] |
| Pholidota articulata (Lindl.) | Orchidaceae | Leaves | Kumaon | India | [100] |
| Coelogyne cristata (Lindl.) | Orchidaceae | Roots | Kumaon | India | [100] |
| Vanda cristata (Lindl.) | Orchidaceae | Leaves | Kumaon | India | [100] |
| Ulmus wallichiana (Planch.) | Ulmaceae | Stem bark | Kumaon | India | [100] |
| Blepharis integrifolia (L.f.) | Acanthaceae | Whole plant | Western Ghats | India | [101] |
| Dicliptera paniculata (Forssk.) | Acanthaceae | Leaf | Western Ghats | India | [101] |
| Holigarna grahamii (Wight) | Anacardiaceae | Bark | Western Ghats | India | [101] |
| Amorphophallus paeoniifolius (Dennst.) | Araceae | Grain | Western Ghats | India | [101] |
| Pothos scandens (L.) | Araceae | Whole plant | Western Ghats | India | [101] |
| Terminalia cuneata (Roxb.) | Combretaceae | Stem bark | Western Ghats | India | [101] |
| Diospyros montana (Roxb.) | Ebenaceae | Leaf | Western Ghats | India | [101] |
| Antidesma acidum (Retz.) | Euphorbiaceae | Bark | Western Ghats | India | [101] |
| Bridelia stipularis (L.) | Euphorbiaceae | Bark | Western Ghats | India | [101] |
| Baliospermum solanifolium (Willd.) | Euphorbiaceae | Root | Western Ghats | India | [101] |
| Glochidion heyneanum (Wight & Arnott) | Euphorbiaceae | Stem | Western Ghats | India | [101] |
| Abrus precatorious (L.) | Fabaceae | Roots and seeds | Western Ghats | India | [101] |
| Cassia fistula (L.) | Fabaceae | Stem bark | Western Ghats | India | [101] |
|
Senna tora (L.) |
Fabaceae | Leaf | Western Ghats | India | [101] |
|
Millettia pinnata (L.) |
Fabaceae | Leaf | Western Ghats | India | [101] |
| Tamarindus indica (L.) | Fabaceae | Leaf | Western Ghats | India | [101] |
| Casearia tomentosa (Roxb.) | Flacourtiaceae | Leaf | Western Ghats | India | [101] |
| Ocimum basilicum (L.) | Lamiaceae | Leaf | Western Ghats | India | [101] |
| Cinnamomum wightii (Meisn.) | Lauraceae | Stalk | Western Ghats | India | [101] |
| Persea macranta (Meisn.) | Lauraceae | Stem bark | Western Ghats | India | [101] |
| Tinospora cordifolia (Willd.) | Menispermaceae | Stem | Western Ghats | India | [101] |
| Tinospora sinensis (Lour.) | Menispermaceae | Stem | Western Ghats | India | [101] |
| Ficus benghalensis (L.) | Moraceae | Leaf | Western Ghats | India | [101] |
| Moringa oleífera (Lam.) | Moringaceae | Gum and root | Western Ghats | India | [101] |
| Nyctanthes arbor-tristis (L.) | Oleaceae | Root | Western Ghats | India | [101] |
| Cynodon dactylon (L.) | Poaceae | Whole plant | Western Ghats | India | [101] |
| Citrus limon (L.) | Rutaceae | Fruit | Western Ghats | India | [101] |
| Zanthoxylum rhetsa (Roxb.) | Rutaceae | Seeds | Western Ghats | India | [101] |
| Cissus quadrangularis (L.) | Vitaceae | Stem | Western Ghats | India | [101] |
| Urena lobata (L.) | Malvaceae | Whole plant | West Cameroon | Cameroon | [6] |
| Elephantopus mollis (Kunth.) | Asteraceae | Leaves or branch | West Cameroon | Cameroon | [6] |
| Momordica multiflora (Hook.f) | Cucurbitaceae | Whole plant | West Cameroon | Cameroon | [6] |
| Asystasia gangetica (L.) | Acanthaceae | Whole plant | West Cameroon | Cameroon | [6] |
| Brillantaisia ovariensis (P. Beauv.) | Acanthaceae | Whole plant | West Cameroon | Cameroon | [6] |
| Spilanthes africana (DC.) | Asteraceae | Whole plant | West Cameroon | Cameroon | [6] |
| Lasia aculeata (Lour.) | Araceae | Root | * | Bangladesh | [102] |
| Pothos scandens (L.) | Araceae | Leaf and bark | * | Bangladesh | |
| Chenopodium ambrosioides (L.) | Chenopodiaceae | Leaves | Piauí | Brazil | [103] |
| Chloranthus glaber (Thunb.) | Chloranthaceae | * | * | Philippines | [104] |
| Cryptolepis buchanani (Roem. & Schult.) | Asclepiadaceae | Whole plant | Arunachal Pradesh | Southeast Asia | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
