Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

A Review of Major Patents on Potential Malaria Vaccine Targets, Including Antigens from Different Stages of The Parasite Cycle

Version 1 : Received: 31 December 2022 / Approved: 11 January 2023 / Online: 11 January 2023 (03:08:51 CET)

A peer-reviewed article of this Preprint also exists.

Mariano, R.M.S.; Gonçalves, A.A.M.; Oliveira, D.S.; Ribeiro, H.S.; Pereira, D.F.S.; Santos, I.S.; Lair, D.F.; Silva, A.V.; Galdino, A.S.; Chávez-Fumagalli, M.A.; Silveira-Lemos, D.D.; Dutra, W.O.; Giunchetti, R.C. A Review of Major Patents on Potential Malaria Vaccine Targets. Pathogens 2023, 12, 247. Mariano, R.M.S.; Gonçalves, A.A.M.; Oliveira, D.S.; Ribeiro, H.S.; Pereira, D.F.S.; Santos, I.S.; Lair, D.F.; Silva, A.V.; Galdino, A.S.; Chávez-Fumagalli, M.A.; Silveira-Lemos, D.D.; Dutra, W.O.; Giunchetti, R.C. A Review of Major Patents on Potential Malaria Vaccine Targets. Pathogens 2023, 12, 247.

Abstract

Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite's complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite's replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite’s life cycle.

Keywords

malaria vaccine; patents; stage of development

Subject

Biology and Life Sciences, Parasitology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.