Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Algebraic Morphology of DNA--RNA Transcription and Regulation

Version 1 : Received: 13 December 2022 / Approved: 14 December 2022 / Online: 14 December 2022 (11:02:59 CET)

A peer-reviewed article of this Preprint also exists.

Planat, M.; Amaral, M. M.; Irwin, K. Algebraic Morphology of DNA–RNA Transcription and Regulation. Symmetry, 2023, 15, 770. https://doi.org/10.3390/sym15030770. Planat, M.; Amaral, M. M.; Irwin, K. Algebraic Morphology of DNA–RNA Transcription and Regulation. Symmetry, 2023, 15, 770. https://doi.org/10.3390/sym15030770.

Abstract

Transcription factors (TFs) and microRNAs (miRNAs) are co-actors in genome-scale decoding and regulatory networks, often targeting common genes. In this paper, we describe the algebraic geometry of both TFs and miRNAs thanks to group theory. In TFs, the generator of the group is a DNA-binding domain while, in miRNAs, the generator is the seed of the sequence. For such a generated (infinite) group $\pi$, we compute the $SL(2,\mathbb{C})$ character variety, where $SL(2,\mathbb{C})$ is simultaneously a \lq space-time' (a Lorentz group) and a \lq quantum' (a spin) group. A noteworthy result of our approach is to recognize that optimal regulation occurs when $\pi$ looks like a free group $F_r$ ($r =1$ to $3$) in the cardinality sequence of its subgroups, a result obtained in our previous papers. A non free group structure features a potential disease. A second noteworthy result is about the structure of the Groebner basis $\mathcal{G}$ of the variety. A surface with simple singularities (like the well known Cayley cubic) within $\mathcal{G}$ is a signature of a potential disease even when $G$ looks like a free group $F_r$ in its structure of subgroups. Our methods apply to groups with a generating sequence made of two to four distinct DNA/RNA bases in $\{A,T/U,G,C\}$. Several human TFs and miRNAs are investigated in detail thanks to our approach.

Keywords

Transcription factors; micro-RNAs; diseases; finitely generated group; $SL(2,\mathbb{C})$ character variety, algebraic surfaces

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.