Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

More Than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed Within the First Ten Millimeters of Biological Tissue

Version 1 : Received: 8 November 2022 / Approved: 9 November 2022 / Online: 9 November 2022 (10:24:26 CET)

A peer-reviewed article of this Preprint also exists.

Kaub, L.; Schmitz, C. More Than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed within the First Ten Millimeters of Biological Tissue. Biomedicines 2022, 10, 3204. Kaub, L.; Schmitz, C. More Than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed within the First Ten Millimeters of Biological Tissue. Biomedicines 2022, 10, 3204.

Abstract

There is increasing interest in the application of near-infrared (NIR) laser light for the treatment of various musculoskeletal disorders. The present study thoroughly examined the physical characteristics of laser beams from two different laser therapy devices that are commercially available for the treatment of musculoskeletal disorders. Then, these laser beams were used to measure the penetration depth in various biological tissues from different animal species. The key result of the present study was the finding that for all investigated tissues, most of the initial light energy was lost in the first one to two millimeters, more than 90% of the light energy was absorbed within the first ten millimeters, and there was hardly any light energy left after 15 – 20 mm of tissue. Furthermore, the investigated laser therapy devices fundamentally differed in several laser beam parameters that can have an influence on how light is transmitted through tissue. Overall, the present study showed that a laser therapy device that is supposed to reach deep layers of tissue for treatments of musculoskeletal disorders should operate with a wavelength between 800 nm and 905 nm, a top-hat beam profile, and it should emit very short pulses with a large peak power.

Keywords

laser therapy; musculoskeletal system; tissue penetration depth; laser beam characterization

Subject

Medicine and Pharmacology, Orthopedics and Sports Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.