Preprint
Article

This version is not peer-reviewed.

Incoherence of Deep Isotropic Neural Networks increase their performance on Image Classification

A peer-reviewed article of this preprint also exists.

Submitted:

30 September 2022

Posted:

08 October 2022

You are already at the latest version

Abstract
Although neural network architectures are critical for their performance, how the structural characteristics of a neural network affect its performance has still not been fully explored. We here map architectures of neural network to directed acyclic graphs, and find that incoherence, a structural characteristic to measure the order of directed acyclic graphs, is a good indicator for the performance of corresponding neural networks. Therefore we propose a deep isotropic neural network architecture by folding a chain of same blocks then connecting the blocks with skip connections at different distances. Our models, named FoldNet, have two distinguishing features compared with traditional residual neural netowrks. First, the distances between block pairs connected by skip connections increase from always equal to one to specially selected different values, which lead to more incoherent graphs and let the neural network explore larger receptive fields and thus enhance its multi-scale representation ability. Second, the number of direct paths increases from one to multiple, which leads to a larger proportion of shorter paths and thus improve the direct propagation of information throughout the entire network. Image classification results on CIFAR-10 and Tiny ImageNet benchmarks suggested that our new network architecture performs better than traditional residual neural networks.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated