Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

All-Polymeric Electrode based on PEDOT:PSS for In-Vivo Neural Recording

Version 1 : Received: 13 September 2022 / Approved: 15 September 2022 / Online: 15 September 2022 (08:04:38 CEST)

A peer-reviewed article of this Preprint also exists.

Filho, G.; Júnior, C.; Spinelli, B.; Damasceno, I.; Fiuza, F.; Morya, E. All-Polymeric Electrode Based on PEDOT:PSS for In Vivo Neural Recording. Biosensors 2022, 12, 853. Filho, G.; Júnior, C.; Spinelli, B.; Damasceno, I.; Fiuza, F.; Morya, E. All-Polymeric Electrode Based on PEDOT:PSS for In Vivo Neural Recording. Biosensors 2022, 12, 853.

Abstract

One of the significant challenges today in the brain-machine interface using invasive methods is the stability of the chronic record. In recent years, polymer-based electrodes have gained notoriety for achieving mechanical strength values close to that of brain tissue, promoting a lower immune response to the implant. In this work, we fabricated fully polymeric electrodes based on PEDOT:PSS for neural recording in Wistar rats. We characterized the electrical properties and both in-vitro and in-vivo functionality of the electrodes. Also, we employed histological processing and microscopical visualization to evaluate tecidual immune response in 7, 14, and 21 days post-implant days. Electrodes with 400-micrometer channels showed a 12dB signal-to-noise ratio. Local field potentials were characterized under two conditions: anesthetized and free-moving. There was a proliferation of microglia to the tissue-electrode interface in the first days, with a decrease after 14 days. Astrocytes also migrated to the interface, but there was no continuous recruitment of these cells in the tissue, showing inflammatory stability at 21 days. The signal was not affected by this inflammatory action, demonstrating that fully polymeric electrodes can be an alternative to prolong the valuable time of neural recordings.

Keywords

PEDOT:PSS; Neural recording; Immune response; BMI

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.