Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Combined Fungicide Treatment Affects Soil Microbial Community and Incidences of Fungal Diseases on Wheat

Version 1 : Received: 12 September 2022 / Approved: 13 September 2022 / Online: 13 September 2022 (11:00:07 CEST)

A peer-reviewed article of this Preprint also exists.

Vasilchenko, A.V.; Poshvina, D.V.; Semenov, M.V.; Timofeev, V.N.; Iashnikov, A.V.; Stepanov, A.A.; Pervushina, A.N.; Vasilchenko, A.S. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. Plants 2023, 12, 660. Vasilchenko, A.V.; Poshvina, D.V.; Semenov, M.V.; Timofeev, V.N.; Iashnikov, A.V.; Stepanov, A.A.; Pervushina, A.N.; Vasilchenko, A.S. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. Plants 2023, 12, 660.

Abstract

Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil have an unintended impact on non-targeted microorganisms. In this study, we evaluated the impact of the combined fungicide (difenoconazole, epoxiconazole, and kresoxim-methyl) on fungal and bacterial communities of Phaeozem. In the fungicide-treated soil, the Shannon index of both fungal and bacterial communities was decreased, while Chao1 index did not differ compared to the control soil. Among bacterial taxa, the relative abundance of Athrobacter, Sphingomicrobium, and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, which increased 2-4 times in the fungicide-treated soil, while the relative abundance of Mortierella and Talaromyces decreased. Fusarium acuminatum was the most abundant phytopathogenic fungus that causes root rot disease of wheat, but applied fungicide treatment decreased their diversity in the soil 2 times, which is consistent on the observed plants.

Keywords

non-target action; soil microbiome; pesticide contamination; fungicide; soil quality

Subject

Biology and Life Sciences, Agricultural Science and Agronomy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.