Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Statistical Equilibrium Principles in 2D Fluid Flow: From Geophysical Fluids to the Solar Tachocline

Version 1 : Received: 9 August 2022 / Approved: 11 August 2022 / Online: 11 August 2022 (11:48:18 CEST)

A peer-reviewed article of this Preprint also exists.

Weichman, P.B.; Marston, J.B. Statistical Equilibrium Principles in 2D Fluid Flow: From Geophysical Fluids to the Solar Tachocline. Entropy 2022, 24, 1389. Weichman, P.B.; Marston, J.B. Statistical Equilibrium Principles in 2D Fluid Flow: From Geophysical Fluids to the Solar Tachocline. Entropy 2022, 24, 1389.

Journal reference: Entropy 2022, 24, 1389
DOI: 10.3390/e24101389

Abstract

An overview is presented of several diverse branches of work in the area of effectively 2D fluid equilibria which have in common that they are constrained by an infinite number of conservation laws. Broad concepts, and the enormous variety of physical phenomena that can be explored, are highlighted. These span, roughly in order of increasing complexity, Euler flow, nonlinear Rossby waves, 3D axisymmetric flow, shallow water dynamics, and 2D magnetohydrodynamics. The classical field theories describing these systems bear some resemblance to perhaps more familiar fluctuating membrane and continuous spin models, but the fluid physics drives these models into unconventional regimes exhibiting large scale jet and eddy structures. From a dynamical point of view these structures are the end result of various conserved variable forward and inverse cascades. The resulting balance between large scale structure and small scale fluctuations is controlled by the competition between energy and entropy in the system free energy, in turn highly tunable through setting the values of the conserved integrals. Although the statistical mechanical description of such systems is fully self-consistent, with remarkable mathematical structure and diversity of solutions, great care must be taken because the underlying assumptions, especially ergodicity, can be violated or at minimum lead to exceedingly long equilibration times. Generalization of the theory to include weak driving and dissipation (e.g., non-equilibrium statistical mechanics and associated linear response formalism) could provide additional insights, but has yet to be properly explored.

Keywords

Fluid dynamics; Turbulent cascades; Fluid equilibria; Casimir constraints; Euler equation; Quasigeostrophic equations; Rossby waves; Axisymmetric flows; Shallow water equations; Magnetohydrodynamics

Subject

PHYSICAL SCIENCES, Fluids & Plasmas

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.