Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Influence of ZnO Nanostructure Morphologies on Perovskite Solar Cell Performance: A Review

Version 1 : Received: 1 August 2022 / Approved: 5 August 2022 / Online: 5 August 2022 (09:53:28 CEST)

A peer-reviewed article of this Preprint also exists.

Manabeng, M.; Mwankemwa, B.S.; Ocaya, R.O.; Motaung, T.E.; Malevu, T.D. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes 2022, 10, 1803. Manabeng, M.; Mwankemwa, B.S.; Ocaya, R.O.; Motaung, T.E.; Malevu, T.D. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes 2022, 10, 1803.

Abstract

Zinc oxide (ZnO) has been widely studied over the last decade for its remarkable properties in optoelectronic and photovoltaic devices because of its high electron mobility and excitonic properties, probably the broadest range of nanostructured forms, and their ease and low cost of synthesis by a wide variety of methods. The volume of recent work on ZnO nanostructures and their devices can potentially overshadow significant developments in the field. Therefore, there is a need for a concise description of the most recent advances in the field. In this review, we focus on the effect of ZnO nanostructure morphologies on the performance of ZnO-based solar cells sensitized using methylammonium lead iodide perovskite. We present an exhaustive discussion of the synthesis routes for different ZnO nanostructure morphologies, ways to control the morphology, and the impact of morphology on the photo-conversion efficiency of a given PSC.

Keywords

ZnO morphologies; Perovskite; Efficiency; photovoltaic devices

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.