Preprint
Review

This version is not peer-reviewed.

3D Reconstruction from a Single RGB Image using Deep Learning: A Review

A peer-reviewed article of this preprint also exists.

Submitted:

01 August 2022

Posted:

02 August 2022

You are already at the latest version

Abstract
3D reconstruction from a single 2D input is a classic problem in the field of computer vision. With the advancements in deep learning, the performance of 3D reconstruction has also significantly improved. The reconstruction task is more difficult for objects with no textures or complex deformations. This paper serves as a review of recent literature on 3D reconstruction from a single view, with a focus on deep learning methods from 2018 to 2021. Due to lack of standard datasets or 3D shape representation methods, it is hard make direct comparisons between all reviewed methods. However, this paper reviews different approaches for reconstructing 3d shape as depth maps, surface normals, point clouds and meshes; along with various loss functions and evaluation metrics used to train and evaluate these methods.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated