Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Structure and Reactivity of CoFe2O4(001)surfaces in Contact with a Thin Water Film

Version 1 : Received: 1 August 2022 / Approved: 2 August 2022 / Online: 2 August 2022 (08:18:40 CEST)

A peer-reviewed article of this Preprint also exists.

Kox, T.; Omranpoor, A.H.; Kenmoe, S. Structure and Reactivity of CoFe2O4(001) Surfaces in Contact with a Thin Water Film. Physchem 2022, 2, 321-333. Kox, T.; Omranpoor, A.H.; Kenmoe, S. Structure and Reactivity of CoFe2O4(001) Surfaces in Contact with a Thin Water Film. Physchem 2022, 2, 321-333.

Abstract

CoFe2O4 is a promissing catalytic material for many chemical reactions. We have used ab initio molecular dynamic simulations to study the structure and reactivity of the A- and B-terminations of the low index CoFe2O4 (001) surfaces to water adsorption at room temperature. Upon adsorption, water partly dissociates on both termination with a higher dissociation degree on the A- termination (30% versus 19%). The 2-fold coordinated Fe3+(tet) in the tetrahedral voids and the 5-fold coordinated Fe3+(oct) in the octahedral voids are the main active sites for water dissociation on the A- and B-termination, respectively. Molecular water, hydroxydes and surface OH resulting from proton transfer to surface oxygens are present on the surfaces. Both water free sur- face terminations undergo reconstruction. The outermost Fe3+(tet) on the A-termination and B-termination move towards the nearby unoccupied octahedral voids. In the presence of a thin film of 32 water molecules, the reconstructions are partially and completely lifted on the A- and B-termination, respectively.

Keywords

molecular dynamis; spinels; water adsorption

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.