Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Computational Biology and Machine Learning Approaches to Identify the Rubber Tree (Hevea brasiliensis L.) Genome Encoded Potential MicroRNAs Targeting Rubber Tree Virus 1

Version 1 : Received: 22 July 2022 / Approved: 22 July 2022 / Online: 22 July 2022 (09:52:38 CEST)

A peer-reviewed article of this Preprint also exists.

Ashraf, M.A.; Tariq, H.K.; Hu, X.-W.; Khan, J.; Zou, Z. Computational Biology and Machine Learning Approaches Identify Rubber Tree (Hevea brasiliensis Muell. Arg.) Genome Encoded MicroRNAs Targeting Rubber Tree Virus 1. Appl. Sci. 2022, 12, 12908. https://doi.org/10.3390/ app122412908 Ashraf, M.A.; Tariq, H.K.; Hu, X.-W.; Khan, J.; Zou, Z. Computational Biology and Machine Learning Approaches Identify Rubber Tree (Hevea brasiliensis Muell. Arg.) Genome Encoded MicroRNAs Targeting Rubber Tree Virus 1. Appl. Sci. 2022, 12, 12908. https://doi.org/10.3390/ app122412908

Abstract

Tapping panel dryness (TPD) syndrome is a complex disease of Rubber tree (Hevea brasiliensis L.) which causes cessation of latex drainage upon tapping of rubber tree. Rubber tree virus (RTV1) was identified as a novel pathogen associated with rubber tree and a potential causal agent of TPD. RTV1 is a monopartite RNA virus that is linear, non-enveloped and has a single-stranded (ss) positive RNA genome of approximately 6081 nucleotides and is composed of two major open reading frames (ORFs), ORF1 (polyprotein), and ORF2 (movement protein. This study aimed to investigate the possibility of rubber genome encoded tree microRNAs (miRNAs) as novel therapeutic targets against RTV1 using in silico algorithms. Mature rubber tree miRNAs are retrieved from the miRBase database and are used for hybridization of RTV1 using five different five different computational algorithms including miRanda, RNA22, RNAhybrid and psRNATarget. A total of eleven common rubber tree miRNAs were identified based on consensus genomic positions. The consensus of four algorithms predicted the hybridization sites of hbr-miR396a and hbr-miR398 at common locus positions 6676, 1840 respectively. To validate the prediction, secondary structures of the consensual rubber tree miRNAs and free energy of duplex binding were calculated using the RNAfold and RNAcofold algorithms respectively. We created a plot between rubber tree miRNAs and RTV1 ORFs by using Circos algorithm. In this study, we predicted eleven consensual rubber tree miRNAs. Among these miRNAs, hbr-miR398 was identified as the most effectual miRNA that may target the ORF1 gene of the RTV1 genome. The predicted data will be important in the development of rubber trees resistant to RTV1.

Keywords

Rubber tree capillovirus 1; microRNAs; plant-virus interaction; RNAi: computational algorithms; gene silencing, minimum free energy

Subject

Biology and Life Sciences, Plant Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.