Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ab-initio Molecular Dynamics Simulation of the Changes in the Optical Properties of 2D MoS2 When Doped with Pt at 300 K

Version 1 : Received: 20 July 2022 / Approved: 21 July 2022 / Online: 21 July 2022 (03:24:52 CEST)

How to cite: Ramírez-de-Arellano, J.M.; Jiménez-González, A.F.; Canales, M.; Magaña, L.F. Ab-initio Molecular Dynamics Simulation of the Changes in the Optical Properties of 2D MoS2 When Doped with Pt at 300 K. Preprints 2022, 2022070310. https://doi.org/10.20944/preprints202207.0310.v1 Ramírez-de-Arellano, J.M.; Jiménez-González, A.F.; Canales, M.; Magaña, L.F. Ab-initio Molecular Dynamics Simulation of the Changes in the Optical Properties of 2D MoS2 When Doped with Pt at 300 K. Preprints 2022, 2022070310. https://doi.org/10.20944/preprints202207.0310.v1

Abstract

Using first-principles molecular dynamics (FPMD), we performed numerical simulations at 300 K to explore the interaction of a 2D MoS2 surface and a platinum atom, calculating the optical properties of the resulting material. The pristine MoS2 is a semiconductor with a gap of around 1.8 eV. The Pt atom is chemisorbed by the surface with an adsorption energy of −1.718 eV. With the adsorption of the Pt atom, the material remains a semiconductor, and its energy band gap reduces to 1.04 eV. But changes in the material's energy band structure imply substantial changes in its optical properties. The energy band structure of the 2D MoS2 with a sulfur vacancy VS shows that the material becomes a conductor, and there are significant changes in its optical properties. We also found that the Pt atom chemisorbs in a sulfur vacancy of the material, with an adsorption energy of −4.1164 eV. After the adsorption of Pt atoms in the sulfur vacancy, the material becomes a semiconductor with a band gap of 1.06 eV, and the changes in the optical absorption and reflectivity are significant.

Keywords

ab-initio; DFT calculations; 2D materials; MoS2; optical properties; platinum; FPMD

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.