Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Design of Broadband Perfect Solar Absorber Based on Four-Layer Structure with Cross-Shaped Resonator and Triangular Array

Version 1 : Received: 30 June 2022 / Approved: 5 July 2022 / Online: 5 July 2022 (05:15:18 CEST)

A peer-reviewed article of this Preprint also exists.

Chen, Y.; You, K.; Lin, J.; Zhao, J.; Ma, W.; Meng, D.; Cheng, Y.; Liu, J. Design of a Broadband Perfect Solar Absorber Based on a Four-Layer Structure with a Cross-Shaped Resonator and Triangular Array. Photonics 2022, 9, 565. Chen, Y.; You, K.; Lin, J.; Zhao, J.; Ma, W.; Meng, D.; Cheng, Y.; Liu, J. Design of a Broadband Perfect Solar Absorber Based on a Four-Layer Structure with a Cross-Shaped Resonator and Triangular Array. Photonics 2022, 9, 565.

Abstract

As solar energy is a low-cost and clean energy source, there has been a great deal of interest in how to harvest it. To absorb solar energy efficiently, we have designed a broadband metamaterial absorber based on the principle of Fabry–Pérot (FP) cavity and surface plasmon resonances (SPRs). We propose a broadband perfect absorber consisting of a four-layer structure of silica-tungsten-silica-titanium (SiO2-W-SiO2-Ti) for the incident light wavelength range of 300–2500 nm. The structure achieves perfect absorption of incident light in the wavelength range of 351.8–2465.0 nm (absorption >90%), with an average absorption of 96.3%. The advantage of our proposed structure is that it combines the characteristics of both high and broadband absorption and has a high overall absorption efficiency for solar radiation. It is also independent of polarization and insensitive to incident angle. We investigated how absorption was affected by different structures, materials, geometrical parameters, and refractive indices for different dielectric materials, and we explored the reasons for high absorption. This structure is refractory and ultra-thin, and it offers a good trade-off between bandwidth and absorption. It therefore has premium application prospects and value.

Keywords

perfect absorber; ultra-broadband; visible region; near infrared region

Subject

Physical Sciences, Optics and Photonics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.