Preprint
Article

This version is not peer-reviewed.

Quality of Experience Experimentation Prediction Framework Through Programmable Network Management

  ‡ These authors contributed equally to this work.

A peer-reviewed article of this preprint also exists.

Submitted:

29 June 2022

Posted:

04 July 2022

You are already at the latest version

Abstract
Quality of Experience (QoE) metrics can be used to assess user perception and satisfaction in data services applications delivered over the Internet. End-to-end metrics are formed because QoE is dependent on both the users’ perception and the service used. Traditionally, network optimization has focused on improving network properties such as the QoS. In this paper we examine the Adaptive streaming over a software defined network environment. We aimed to evaluate and study the media streams, aspects affecting the stream, and network. This was done to eventually reach a stage of analysing the network’s features and their direct relationship with the perceived QoE. We then use machine learning to build a prediction model based on subjective user experiments. This will help to eliminate future physical experiments and automate the process of predicting QoE.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated