Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids

Version 1 : Received: 29 June 2022 / Approved: 1 July 2022 / Online: 1 July 2022 (03:59:26 CEST)

A peer-reviewed article of this Preprint also exists.

Roosjen, S.; Glushenkov, M.; Kronberg, A.; Kersten, S. Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids. Energies 2022, 15, 5265. Roosjen, S.; Glushenkov, M.; Kronberg, A.; Kersten, S. Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids. Energies 2022, 15, 5265.

Abstract

Economic expedience of waste heat recovery systems (WHRS), especially for low temperature difference applications, is often questionable due to high capital investments and long pay-back periods. By its simple design isobaric expansion (IE) machines could provide a viable pathway to utilize otherwise unprofitable waste heat streams for power generation and particularly for pumping liquids and compression of gases. Different engine configurations are presented and discussed. A new method of modelling and calculation of the IE process and efficiency is used on IE cycles with various pure and mixtures as a working fluid. Some interesting cases are presented. It is shown in this paper, that the simplest non-regenerative IE engines are efficient at low temperature differences between a heat source and heat sink. Efficiency of non-regenerative IE process with pure working fluid can be very high approaching Carnot efficiency at low pressure and heat source/heat sink temperature differences. Regeneration permits to increase efficiency of the IE-cycle to some extent. Application of mixed working fluids in combination with regeneration permits to significantly increase the range of high efficiencies to much larger temperature and pressure differences.

Keywords

Isobaric expansion engines; heat driven pump; compressors; low-grade heat; mixed working fluids

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.