Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Addressed Combined Fiber-Optic Sensors as Key Element of Multi-Sensor Greenhouse Gas Monitoring Systems

Version 1 : Received: 21 June 2022 / Approved: 21 June 2022 / Online: 21 June 2022 (10:26:11 CEST)

A peer-reviewed article of this Preprint also exists.

Morozov, O.; Tunakova, Y.; Hussein, S.M.R.H.; Shagidullin, A.; Agliullin, T.; Kuznetsov, A.; Valeev, B.; Lipatnikov, K.; Anfinogentov, V.; Sakhabutdinov, A. Addressed Combined Fiber-Optic Sensors as Key Element of Multisensor Greenhouse Gas Monitoring Systems. Sensors 2022, 22, 4827. Morozov, O.; Tunakova, Y.; Hussein, S.M.R.H.; Shagidullin, A.; Agliullin, T.; Kuznetsov, A.; Valeev, B.; Lipatnikov, K.; Anfinogentov, V.; Sakhabutdinov, A. Addressed Combined Fiber-Optic Sensors as Key Element of Multisensor Greenhouse Gas Monitoring Systems. Sensors 2022, 22, 4827.

Abstract

The design and usage of the addressed combined fiber-optic sensors (ACFOS) and the multisensory control systems of the greenhouse gas concentration on their basis are investigated. The main development trend of the combined fiber-optic sensors (CFOS), consisting of the fiber Bragg grating (FBG) and the Fabry-Perot resonator (FPR), which are successively formed at the optical fiber end, is highlighted. The addressed fiber Bragg structures (AFBS) usage instead of the FBG in the CFOS leads not only to significant cheapening of the sensor system due to microwave photonics interrogating methods, but also to increasing its metrological characteristics. The structural scheme of the multisensory gas concentration monitoring system is suggested. The suggested scheme allows detecting four types of the greenhouse gases (СО2, NO2, CH4, OX) depending on the material and thickness of the polymer film, which is the FPR sensitive element. The usage of Karunen-Loeff transform (KLT), which allows separating each component contribution to the reflected spectrum according to its efficiency, is proposed. In the future, it allows determining the gas concentration at the AFBS address frequencies. The estimations have shown that the ACFOS design in the multisensory system allows measuring the environment temperature in the range of −60…+300 °C with an accuracy of 0.1–0.01 °C, and the gas concentration in the range of 10…90% with the accuracy of 0.1–0.5%.

Keywords

environmental monitoring; greenhouse gases; multi-sensor system; combined fiber optic sensors; fiber Bragg grating; addressed fiber Bragg structure; Fabry-Perot resonator; Carunen-Loeff transforms

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.