Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Numerical Study on the Effect of Deposits Layer on the Minimum Wall Thickness of Boiler Water Tube Under Different Operating Conditions

Version 1 : Received: 16 June 2022 / Approved: 17 June 2022 / Online: 17 June 2022 (10:11:56 CEST)

A peer-reviewed article of this Preprint also exists.

Aljohani, A.S.; Ahmed, K.I.; Asiri, S.; Ahmed, M.H. Numerical Study on the Effect of Deposit Layer on the Minimum Wall Thickness of Boiler Water Tube under Different Operating Conditions. Appl. Sci. 2022, 12, 8838. Aljohani, A.S.; Ahmed, K.I.; Asiri, S.; Ahmed, M.H. Numerical Study on the Effect of Deposit Layer on the Minimum Wall Thickness of Boiler Water Tube under Different Operating Conditions. Appl. Sci. 2022, 12, 8838.

Abstract

Steam boiler has a significant role in the industrial sector. The failure in boiler tubes significantly reduces the availability of the plant. Furthermore, deposits on the inner tube wall contribute to such failure by changing the thermal resistance of the wall, which causes a significant increase in the tube wall's temperature and, consequently, lower allowable stress. The presented thermal-fluid model is developed for the water tube. The model is implemented using ANSYS FLUENT to estimate the wall maximum water tube wall temperature considering the deposits layer and then determine the minimum thickness of the tube wall via ASME standards to assure safe operation. The model is verified via a mesh independence test. The minimum tube thickness is recommended and justified given the thermo-mechanical performance of the water tubes at several operating loads of 50, 75, and 100 %. These loads are implemented by different convective heat transfer coefficients of flue gases under different deposit thicknesses, thermal conductivity, and flue gas temperature. The present work contributes to the literature by recommending the minimum thickness of the water wall tubes and highlighting the thermo-mechanical effect of the deposits on water tube resilience under different operating conditions.

Keywords

steam boiler; water tube; deposit layer; tube wall thickness; wall tube thermal conductivity, thermo-mechanical performance

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.