Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

End-to-End Prediction of Lightning Events from Geostationary Satellite Images

Version 1 : Received: 15 June 2022 / Approved: 16 June 2022 / Online: 16 June 2022 (10:48:59 CEST)

A peer-reviewed article of this Preprint also exists.

Brodehl, S.; Müller, R.; Schömer, E.; Spichtinger, P.; Wand, M. End-to-End Prediction of Lightning Events from Geostationary Satellite Images. Remote Sens. 2022, 14, 3760. Brodehl, S.; Müller, R.; Schömer, E.; Spichtinger, P.; Wand, M. End-to-End Prediction of Lightning Events from Geostationary Satellite Images. Remote Sens. 2022, 14, 3760.

Abstract

While thunderstorms can pose severe risks to property and life, forecasting remains challenging, even at short lead times, as these often arise in meta-stable atmospheric conditions. In this paper, we examine the question of how well we could perform short-term (up to 180min) forecasts using exclusively multi-spectral satellite images and past lighting events as data. We employ representation learning based on deep convolutional neural networks in an “end-to-end” fashion. Here, a crucial problem is handling the imbalance of the positive and negative classes appropriately in order to be able to obtain predictive results (which is not addressed by many previous machine-learning-based approaches). The resulting network outperforms previous methods based on physically-based features and optical flow methods (similar to operational prediction models) and generalizes across different years. A closer examination of the classifier performance over time and under masking of input data indicates that the learned model actually draws most information from structures in the visible spectrum, with infrared imaging sustaining some classification performance during the night.

Keywords

neural networks; satellite images; class imbalance; feature attribution; lightning prediction; nowcasting; short-term forecasts; machine learning; meteorology

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.