Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Carbamazepine Removal by Clay-Based Materials Using Adsorption and Photodegradation

Version 1 : Received: 26 May 2022 / Approved: 27 May 2022 / Online: 27 May 2022 (04:42:22 CEST)

A peer-reviewed article of this Preprint also exists.

Levakov, I.; Shahar, Y.; Rytwo, G. Carbamazepine Removal by Clay-Based Materials Using Adsorption and Photodegradation. Water 2022, 14, 2047. Levakov, I.; Shahar, Y.; Rytwo, G. Carbamazepine Removal by Clay-Based Materials Using Adsorption and Photodegradation. Water 2022, 14, 2047.

Abstract

Carbamazepine (CBZ) is one of the most common emerging contaminants released to the aquatic environment through domestic and pharmaceutical wastewater. Due to its high persistence through conventional degradation treatments, is considered a typical indicator for anthropogenic activities. This study tested the removal of CBZ through two different clay-based purification techniques: adsorption of relatively large concentrations (20-500 μmol L-1) and photocatalysis of lower concentrations (<20 μmol L-1). The sorption mechanism was examined by FTIR measurements, exchangeable cations released, and colloidal charge of the adsorbing clay materials. Photocatalysis was performed in batch experiments under various conditions. Despite the neutral charge of carbamazepine, the highest adsorption was observed on negatively charged montmorillonite-based clays. Desorption tests indicate that adsorbed CBZ is not released by washing. The adsorption/desorption processes were confirmed by ATR-FTIR analysis of the clay-CBZ particles. A combination of synthetic montmorillonite or hectorite with low H2O2 concentrations under UVC irradiation exhibits efficient homo-heterogeneous photodegradation at μM CBZ levels. The two techniques presented in this study suggest solutions for both industrial and municipal wastewater, possibly enabling water reuse.

Keywords

carbamazepine; adsorption; clay minerals; organoclays; advanced oxidation processes; photocatalysis; water reuse

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.