Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing Middle East Demand

Version 1 : Received: 24 May 2022 / Approved: 26 May 2022 / Online: 26 May 2022 (10:24:39 CEST)

A peer-reviewed article of this Preprint also exists.

Al-Rubaye, H.; Smith, J.D.; Zangana, M.H.S.; Nagapurkar, P.; Zhou, Y.; Gelles, G. Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand. Energies 2022, 15, 5903. Al-Rubaye, H.; Smith, J.D.; Zangana, M.H.S.; Nagapurkar, P.; Zhou, Y.; Gelles, G. Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand. Energies 2022, 15, 5903.

Abstract

Energy poverty, defined as a lack of access to reliable electricity and reliance on traditional biomass resources for cooking, affects over a billion people daily. The World Health Organization estimates that household air pollution from inefficient stoves causes more premature deaths than malaria, tuberculosis, and HIV/AIDS). Increasing demand for energy has led to dramatic increases in carbon emissions. The need for reliable electricity and limiting carbon emissions drives research on Resil-ient Hybrid Energy Systems (RHES) that provide low-carbon energy through combined wind, so-lar, and biomass energy with traditional fossil energy, increasing production efficiency and relia-bility, and reducing generating costs and carbon emissions. Microgrids have been shown as an ef-ficient means of implementing RHES, with some focused mainly on reducing the environmental impact of electric power generation. The technical challenges of designing, implementing and ap-plying microgrids involve conducting a cradle-to-grave life cycle assessment (LCA) to evaluate these systems' environmental and economic performance under diverse operating conditions to evaluate resiliency. A sample RHES has been developed and used to demonstrate implementation in rural applications. This system can provide reliable electricity for heating, cooling, lighting, and pumping clean water. This paper's primary focus is the challenges of using resilient energy sys-tems in the Middle East.

Keywords

Renewable Energy; Resilience; Hybrid Energy Systems; Life Cycle Analysis

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.