Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Unlocking the Molecular and Biochemical Machinery of Insect Herbivore Resistance: the Key is a Perception of Herbivore-Associated Elicitors

These authors contributed equally.
Version 1 : Received: 24 May 2022 / Approved: 25 May 2022 / Online: 25 May 2022 (03:53:53 CEST)

A peer-reviewed article of this Preprint also exists.

Malook, S.U.; Maqbool, S.; Hafeez, M.; Karunarathna, S.C.; Suwannarach, N. Molecular and Biochemical Mechanisms of Elicitors in Pest Resistance. Life 2022, 12, 844. Malook, S.U.; Maqbool, S.; Hafeez, M.; Karunarathna, S.C.; Suwannarach, N. Molecular and Biochemical Mechanisms of Elicitors in Pest Resistance. Life 2022, 12, 844.

Abstract

Insect herbivores have a wide range of life cycles and feeding habits, making them extremely diverse. With their host plants, they form close relationships and suppress their defense mecha-nisms. Molecular elicitors are the key bio-elements in detection and recognition of attacking enemies in tissue consumption. Insect oral secretion, frass, and fluid of egg deposition contain bio-logical active molecules called herbivore-associated elicitors (HAEs) are recognized by pattern recognition receptors (PRRs). However, in insect herbivores, little is known about the molecular basis of signal transduction and regulation of plant resistance. Many plants distinguish insect feeding from wounding by HAEs presenting in their oral secretions (OS) and induce local and systemic responses against arthropod feeding. PRRs perceive HAEs in the oral secretion of cater-pillars in a species-specific manner to elicit exclusive defense responses. HAEs-PRRs interactions induce plant resistance by reprogramming plant metabolism and transcriptional machinery. Quantitative, timely, and coordinated plant response initiate early signalling events including Ca+2, reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs). We have discussed how early signalling cascades converge into the accumulation of phytohormones that regulate down-stream special metabolites against herbivores. In this review, we have drawn a hypothetical model of PPRs-HAEs mediated induced responses in plants and discussed how PRRs-HAEs interactions based on molecular mechanism that elicit short- and long-term induced defenses in plants. The identification of plant target insect herbivore PRRs-HAEs interactions will help to explore the fundamental molecular mechanisms of host manipulation and may generate prospects to develop novel pest resistance strategies.

Keywords

herbivore-associated elicitors; plant defense; secondary metabolites; signaling metabolites; pattern recognition receptors

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.