Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Giving Drugs A Second Chance: Antibacterial and Antibiofilm Effects of Ciclopirox and Ribavirin Against Cystic Fibrosis Pseudomonas Aeruginosa Strains

Version 1 : Received: 16 April 2022 / Approved: 22 April 2022 / Online: 22 April 2022 (10:55:32 CEST)

A peer-reviewed article of this Preprint also exists.

Di Bonaventura, G.; Lupetti, V.; De Fabritiis, S.; Piccirilli, A.; Porreca, A.; Di Nicola, M.; Pompilio, A. Giving Drugs a Second Chance: Antibacterial and Antibiofilm Effects of Ciclopirox and Ribavirin against Cystic Fibrosis Pseudomonas aeruginosa Strains. Int. J. Mol. Sci. 2022, 23, 5029. Di Bonaventura, G.; Lupetti, V.; De Fabritiis, S.; Piccirilli, A.; Porreca, A.; Di Nicola, M.; Pompilio, A. Giving Drugs a Second Chance: Antibacterial and Antibiofilm Effects of Ciclopirox and Ribavirin against Cystic Fibrosis Pseudomonas aeruginosa Strains. Int. J. Mol. Sci. 2022, 23, 5029.

Abstract

Drug repurposing is an attractive strategy for developing new antibacterial molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence activities of eight FDA-approved “non-antibiotic” drugs, comparatively to tobramycin, against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and MBC values were measured by broth microdilution methods. Time-kill kinetics was studied by the macro dilution method, and synergy studies were performed by checkerboard microdilution assay. The activity against preformed biofilm was measured by crystal violet and viable cell count assays. The effects on gene expression were studied by real-time quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P. aeruginosa planktonic cells and, therefore, underwent further evaluation. Time-kill assays indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have the potential for bacterial eradication, although with strain-dependent efficacy. Ciclopirox was the most effective against the viability of the preformed biofilm. A similar activity was observed for other drugs, although they stimulate EPS production. Ribavirin showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs and tobramycin generally caused hyperexpression of the virulence traits tested, except for actinomycin D, which downregulated the expression of alkaline protease and alginate polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclopirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protective effects.

Keywords

drug repurposing; cystic fibrosis; Pseudomonas aeruginosa; biofilm

Subject

Medicine and Pharmacology, Medicine and Pharmacology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.