Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Character Varieties and Algebraic Surfaces for the Topology of Quantum Computing

Version 1 : Received: 12 April 2022 / Approved: 13 April 2022 / Online: 13 April 2022 (10:37:41 CEST)

A peer-reviewed article of this Preprint also exists.

Planat, M.; Amaral, M.M.; Fang, F.; Chester, D.; Aschheim, R.; Irwin, K. Character Varieties and Algebraic Surfaces for the Topology of Quantum Computing. Symmetry 2022, 14, 915. Planat, M.; Amaral, M.M.; Fang, F.; Chester, D.; Aschheim, R.; Irwin, K. Character Varieties and Algebraic Surfaces for the Topology of Quantum Computing. Symmetry 2022, 14, 915.

Abstract

It is shown that the representation theory of some finitely presented groups thanks to their $SL_2(\mathbb{C})$ character variety is related to algebraic surfaces. We make use of the Enriques-Kodaira classification of algebraic surfaces and the related topological tools to make such surfaces explicit. We study the connection of $SL_2(\mathbb{C})$ character varieties to topological quantum computing (TQC) as an alternative to the concept of anyons. The Hopf link $H$, whose character variety is a Del Pezzo surface $f_H$ (the trace of the commutator), is the kernel of our view of TQC. Qutrit and two-qubit magic state computing, derived from the trefoil knot in our previous work, may be seen as TQC from the Hopf link. The character variety of some two-generator Bianchi groups as well as that of the fundamental group for the singular fibers $\tilde{E}_6$ and $\tilde{D}_4$ contain $f_H$. A surface birationally equivalent to a $K_3$ surface is another compound of their character varieties.

Keywords

$SL_2(\mathbb{C})$ character varieties; algebraic surfaces; magic state quantum computing; topological quantum computing; aperiodicity

Subject

Computer Science and Mathematics, Geometry and Topology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.