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Abstract: It is shown that the representation theory of some finitely presented groups thanks to 1

their SL2(C) character variety is related to algebraic surfaces. We make use of the Enriques-Kodaira 2

classification of algebraic surfaces and the related topological tools to make such surfaces explicit. We 3

study the connection of SL2(C) character varieties to topological quantum computing (TQC) as an 4

alternative to the concept of anyons. The Hopf link H, whose character variety is a Del Pezzo surface 5

fH (the trace of the commutator), is the kernel of our view of TQC. Qutrit and two-qubit magic state 6

computing, derived from the trefoil knot in our previous work, may be seen as TQC from the Hopf 7

link. The character variety of some two-generator Bianchi groups as well as that of the fundamental 8

group for the singular fibers Ẽ6 and D̃4 contain fH . A surface birationally equivalent to a K3 surface 9

is another compound of their character varieties. 10

Keywords: SL2(C) character varieties, algebraic surfaces, magic state quantum computing, topologi- 11

cal quantum computing, aperiodicity 12

1. Introduction 13

Let M be a 3- or a 4-manifold. An important invariant of M is the fundamental group 14

π1(M). It classifies the equivalence classes under homotopy of the loops contained in M. If 15

M is the complement of a knot (or a link) embedded in the 3-dimensional space, π1(M) is 16

called a knot group. The Wirtinger representation explicitly describes the knot group with 17

generators and relations based on a diagram of the knot. 18

In Reference [1], the authors introduce a technique for describing all representations 19

of a finitely-presented group Γ in the group SL2(C). Representations of Γ in SL2(C) are 20

homomorphisms ρ : Γ → SL2(C). The character of a representation ρ is a map κρ : Γ → C 21

defined by κρ(γ) = tr(ρ(γ)), γ ∈ Γ. The set of characters of representations Γ in SL2(C) is 22

R(Γ) = Hom(Γ, SL2(C)) which is a complex affine algebraic set. The set of characters is 23

defined to be X(Γ) =
{

κρ|ρ ∈ R(Γ)
}

. 24

Given a manifold M with fundamental group Γ = π1(M), one refers to the affine 25

algebraic set X̃(π1(M)) as the character variety of M. The character varieties of some 26

3-manifolds of the Bianchi type have been investigated in [2] and more generally in [3]. In 27

the latter reference, a Sage software is developed to make the character variety explicit [4]. 28

In the present paper, one finds that such character varieties decompose into algebraic 29

surfaces that can be recognized through the Enriques-Kodaira classification [5]. Such 30

surfaces are candidates for a new type of topological quantum computing different from 31

anyons [6],[7],[8]. Related ideas are in References [9,10]. A previous work of our group [11, 32

12] proposed to relate the fundamental group of some 3-manifolds to quantum computing 33

but did not employ the representation theory. 34
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In Section 2, we introduce our mathematical concepts about algebraic surfaces, SL2(C) 35

character varieties and magic state quantum computing. The Hopf link H and the 3- 36

dimensional surface fH(x, y, z) = xyz − x2 − y2 − z2 + 4 lie at the ‘basement’. In Section 3, 37

we investigate the ‘floors’ starting with the Whitehead link and its cousins in the Bianchi 38

group family. Then, we find that the affine E6 manifold – the two-covering of the affine E8 39

manifold (also the 0-surgery on the trefoil knot)– and affine D4 manifold –a three-covering– 40

are other floors upon H and fH . The SL2(C) character variety of Ẽ6 is made of two K3 41

surfaces in addition to fH . In conclusion, we propose a few vistas for future research. 42

2. Prolegomena 43

2.1. Algebraic surfaces 44

Given an ordinary projective surface S in the projective space P3 over a number field, 45

if S is birationally equivalent to a rational surface, the software Magma [13] determines the 46

map to such a rational surface and returns its type within five categories. The returned 47

type of S is P2 for the projective plane, a quadric surface (for a degree 2 surface in P3), a 48

rational ruled surface, a conic bundle or a degree p Del Pezzo surface where 1 ≤ p ≤ 9. 49

A further classification may be obtained for S in P3 if S has at most point singularities. 50

Magma computes the type of S (or rather, the type of the non-singular projective surfaces 51

in its birational equivalence class) according to the classification of Kodaira and Enriques 52

[5]. The first returned value is the Kodaira dimension of S, which is −∞, 0, 1 or 2. The 53

second returned value further specifies the type within the Kodaira dimension −∞ or 0 54

cases (and is irrelevant in the other two cases). 55

Kodaira dimension −∞ corresponds to birationally ruled surfaces. The second return 56

in this case is the irregularity q ≥ 0 of S. So S is birationally equivalent to a ruled surface 57

over a smooth curve of genus q and is a rational surface if and only if q is zero. 58

Kodaira dimension 0 corresponds to surfaces which are birationally equivalent to a K3 59

surface, an Enriques surface, a torus or a bi-elliptic surface. 60

Every surface of Kodaira dimension 1 is an elliptic surface (or a quasi-elliptic surface 61

in characteristics 2 or 3), but the converse is not true: an elliptic surface can have Kodaira 62

dimension −∞, 0 or 1. 63

Surfaces of Kodaira dimension 2 are algebraic surfaces of general type. 64

2.2. The Hopf link 65

Let us anticipate the details of our approach of connecting knot/link theory, algebraic
surfaces and topological quantum computing. One takes the linking of two unknotted
curves as in Fig. 1 (Left), the obtained link is called the Hopf link H=L2a1 whose knot
group is defined as the fundamental group of the knot complement in the 3-sphere S3

π1(S3 \ L2a1) = ⟨a, b|[a, b]⟩ = Z2, (1)

where [a, b] = abAB (with A = a−1, B = b−1) is the group theoretical commutator. 66

There are interesting properties of the knot group π1 of Hopf link that we would like 67

to mention. 68

First, the number of coverings of degree d of π1 (which is also the number of conjugacy 69

classes of index d) is precisely the sum of divisor function σ(d) [14]. 70

Second, there exists an invariance of π1 under a repetitive action of the Golden mean 71

substitution (the Fibonacci map) ρ : a → ab, b → a or under the Silver mean substitution 72

ρ : a → aba, b → a. The terms Golden and Silver refer to the Perron-Frobenius eigenvalue 73

of the substitution matrix [15, Examples 4.5 and 4.6]. Such an observation links the Hopf 74

link, the group π1 of the 2-torus and aperiodic substitutions. 75

Using Sage software [4] developed from Ref. [3], the SL2(C) character variety is the 76

polynomial 77

fH(x, y, z) = xyz − x2 − y2 − z2 + 4. (2)
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As expected, the 3-dimensional surface Σ : fH(x, y, z) = 0 is the trace of the commu- 78

tator and is known to correspond to the reducible representations [16, Theorem 3.4.1]. A 79

picture is given in Figure 1 (Right). 80

If we adopt the perspective of algebraic geometry by viewing Σ in the 3-dimensional 81

projective space as 82

ΣH(x, y, z, t) : xyz − t(x2 + y2 + z2) + 4t3 = 0, (3)

then ΣH is a rational surface, more precisely a degree 3 Del Pezzo surface. It contains 4 83

simple singularities. 84

In Reference [9], the author proposes the representation π1 → SU(2)⊗ SU(2) as a 85

model of 2-qubit quantum computing in which each factor is associated to a single qubit 86

located on each component of the Hopf link. Our project expands this idea by taking 87

the representation π1 → SL(2,C) and the attached character variety ΣH as a model of 88

topological quantum computing. Ideas in this direction are found in [17]. 89

Figure 1. Left: the Hopf link. Right: a 3-dimensional picture of the SL2(C) character variety ΣH for
the Hopf link complement.

2.3. Magic state quantum computing 90

Since 2017, following the seminal paper [18], we develop a type of universal quantum 91

computing based on magic states [19,20]. A magic state is a non-stabilizer pure state (a non- 92

eigenstate of a Pauli group gate) that adds to stabilizer operations (Clifford group unitaries, 93

preparations, and measurements) in order to ensure the universality (the possibility of 94

getting an arbitrary quantum gate). It has been recognized that some of the magic states are 95

fiducial states for building a minimal informationally complete positive operator valued 96

measure (or MIC) of the corresponding Hilbert space dimension d, based on the action of 97

the Pauli group Pd on the state. 98

The lower dimensional case is the qutrit MIC arising from the fiducial state fQT = 99

(0, 1,±1). The next case is the two-qubit MIC arising from the fiducial state f2QB = 100

(0, 1,−ω6, ω6 − 1) with ω6 = exp( 2iπ
6 ). For such magic/fiducial states, the geometry of 101

triple products of projectors Πi = |ψi⟩⟨ψi| built with the d2 outcomes ψi is the Hesse 102

configuration (for qutrits: in dimension d = 3) and the GQ(2, 2) configuration (for two- 103

qubits: in dimension d = 22) [19]. The latter configuration embeds the celebrated Mermin 104

square configuration (a 3 × 3 grid of observables) needed to prove the Kochen-Specker 105

theorem. 106

Our search of the magic states is performed with a two-generator infinite group G. A 107

coset table over a subgroup H of index d is built by means of the Coxeter-Todd algorithm 108

resulting in a permutation group. The latter may be seen as a d × d permutation matrix 109

whose eigenstates are the candidates for a magic (and fiducial) state. We are dealing with 110

low d values so that the choice is not large and many groups G do the job. Let us take G 111

as the modular group Γ = PSL(2,Z) as in [20]. Then the appropriate subgroups are in 112

the family of congruence subgroups Γ0(N) of level N defined as the subgroups of upper 113
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triangular matrices with entries taken modulo N. The index of Γ0(N) is the Dedekind 114

function ψ(N). Thus our relevant group for the qutrit magic state is the congruence 115

subgroup Γ0(2) and for the two-qubit magic state it is Γ0(3). 116

Next, the two groups of interest Γ0(2) and Γ0(3) may be seen as fundamental groups of 117

non-hyperbolic 3-manifolds [11]. It is known that Γ is isomorphic to the fundamental group 118

π1(S3 \ 31) of the trefoil knot complement. The subgroups of interest of π1(S3 \ 31) ∼= Γ 119

are attached to links L7n1 and L6a3 [12, Table 4]. Their presentation is as follows 120

π1(S3 \ L7n1) ∼= Γ0(2) =
〈

a, b|[a, b2]
〉
,

π1(S3 \ L6a3) ∼= Γ0(3) =
〈

a, b|[a, b3]
〉
.

Last but not least, in view of the presentation of the groups as commutators, the 121

SL2(C) character variety of the two groups is that fH(x, y, z) of the Hopf link (apart for 122

trivial factors y and y2 − 1) as shown in Table 2. One concludes that universal quantum 123

computing based on the magic states fQT and f2QB is essentially topological quantum 124

computing over the Hopf link. The underlying algebraic geometry for these models is the 125

surface drawn in Figure 1. 126

3. Character varieties for fundamental groups of 3-manifolds and the related algebraic 127

surfaces 128

3.1. The SL2(C) character varieties of knot groups whose reducible component is that of the Hopf 129

link 130

Figure 2. The canonical component of character varieties for (a) the Whitehead link L5a1, (b) the
Whitehead link sister L13n5885, (c) the Bergé link L6a2.

We refer to some torsion free subgroups of rank 1 of Bianchi groups. A Bianchi group 131

Γk = PSL(2,Ok) < PSL(2,C) acts as a subset of orientation-preserving isometries of the 132

3-dimensional hyperbolic space H3 with Ok the ring of integers of the imaginary quadratic 133
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field I = Q(
√
−k). A torsion-free subgroup Γk(l) is the fundamental group π1 of a 3- 134

manifold defined by a knot or a link such as the figure-of-eight knot [with Γ−3(12)], the 135

Whitehead link [with Γ−1(12)] or the Borromean rings [with Γ−1(24)]. See References [21] 136

and [24] for more cases. 137

Looking at [24, Table 1], We see that both the Whitehead link L5a1 and its sister 138

L13n5885 (that have the same volume) are of the type Γ−1(12). They correspond to the 139

3-manifolds ooct0100001 and ooct0100000, respectively. We are also interested with the links 140

L6a2 = 62
2 (the Bergé link) and link L6a1 = 62

3 [2] that are of the type Γ−3(24) and Γ−7(6), 141

respectively. The latter link is related to 3-manifold otet0400001. 142

The four links have fundamental groups of rank 1 as follows 143

π1(S3 \ L5a1) =
〈

a, b|ab3a2bAB3 A2B
〉
,

π1(S3 \ L13n5885) =
〈

a, b|a2bAb2 A2BaB2〉,

π1(S3 \ L6a2) =
〈

a, b|a2bAb2 A2BaB2〉,

π1(S3 \ L6a1) =
〈

a, b|ab3a2b2 AB3 A2B2〉.

Remarkably, as for the Hopf link, we find that the cardinality structure of conjugacy 144

classes of subgroups (card seq) of the fundamental group π1(S3 \ L) for the four links L is 145

invariant under the repetitive action of the Golden mean and the Silver mean substitution. 146

This points out an unexpected relationship of rank 1 Bianchi groups to aperiodicity. 147

The card seq of such 4 groups is 148

ηd(π1(S3 \ L5a1)) = [1, 3, 6, 17, 22, 79, 94, 412, 616, 1659, 2938, 10641, · · · ],
ηd(π1(S3 \ L13n5885)) = [1, 3, 5, 12, 19, 60, 44, 153, 221, 517, 632, 2223, · · · ],

ηd(π1(S3 \ L6a2)) = [1, 3, 4, 9, 24, 59, 71, 156, 262, 1208 · · · ],
ηd(π1(S3 \ L6a1)) = [1, 3, 7, 23, 28, 134, 184, 694, 1353, 3466 · · · ].

Unlike the case of π1(L) for the Hopf link L =L2a1, with links of the Bianchi family, 149

the Golden and Silver mean maps do not preserve the original group. Only the card seq of 150

π1(L) is invariant for the above 4 links. 151

We find that the three former links have a character variety with two components. The 152

reducible component corresponds to the character variety of the Hopf link complement 153

and, as described in the introduction, is associated to a degree 3 Del Pezzo surface. The 154

irreducible (or canonical component) is characterized below, see Table 1 for a summary. 155

Using Sage software [4] developed from Ref. [3], the SL2(C) character variety for the 156

3 links L5a1, L13n5885 and L6a2 factorizes as the product of two polynomials 157

fH(x, y, z) f (x, y, z),

where fH(x, y, z) is the character variety for the Hopf link complement as obtained in Sec. 158

2.2. The polynomial f (x, y, z) consists of the irreducible SL2(C) representations of π1(L). 159

For the Whitehead link, one gets f (x, y, z) = xy2z − y3 − x2y − xz + 2y. It is important to 160

mention that the character variety for the group π1(L) depends on the selected Wirtinger 161

representation. In [3, Section 4.2], the relation for the fundamental group of the Whitehead 162

link complement is taken to be abaB[A, B]ABAb[a, b] instead of the one obtained from 163

SnapPy [23] so that the canonical component of the character variety contains an extra third 164

order term. 165

Passing to the description of the surface f (x, y, z) in the 3-dimensional projective space 166

as the homogeneous polynomial Σ(x, y, z, t) = 0, the main algebraic properties of Σ remain 167

the same whatever the choice of the Wirtinger representation of π1(L). For the Whitehead 168

link, we find that the surface Σ is birationally equivalent to a conic bundle with a Kodaira 169

dimension 0. More precisely Σ belongs to the family of K3 surfaces. 170
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Table 1. Character varieties of fundamental groups whose reducible representations are that of the
Hopf link. Column 1 identifies the group as well as the corresponding link and 3- or 4-manifold.
Column 2 is the name of the link or the relation it has to magic state quantum computing based on
qutrits (QT) or two-qubits (2QB). Column 3 is for the relation(s) of the two-generator fundamental
groups. When the link is not the Hopf link, column 4 is for the canonical component(s) of the
representations and its (their) type as a surface in the 3-dimensional projective space.

link L name rel(s) link group π1(L) character variety f (x, y, z)
L2a1 Hopf [a, b] = abAB fH = xyz − x2 − y2 − z2 + 4

. . . deg 3 Del Pezzo
Γ0(2), L7n1 QT related [a, b2] y fH
Γ0(3), L6a3 2QB related [a, b3] (y2 − 1) fH

Γ−1(12), L5a1 Whitehead ab3a2bAB3 A2B xy2z − y3 − x2y − xz + 2y
ooct0100001 WL . conic bundle, K3 type

Γ−1(12), L13n5885 sister WL a2bAb2 A2BaB2 x2y2 − xyz − x2 + 1
ooct0100000 . . deg 4 Del Pezzo, K3 type

Γ−3(24), L6a2 Bergé ab3a2b2 AB3 A2B2 xy3z − x2y2 − y4 − xyz + 3y2 − 1

otet0400001 . . conic bundle, general type
Γ−7(6), L6a1 abABa2BAb3 ABabA2baB3 undetermined

Ẽ6 IV∗ a3b3, ab2aBA2B xy3 − y2z − x2 − 2xy + z + 2,
. . . y4 − x2z + xy − 4y2 + z + 2
. . . K3 type

Table 2 provides the canonical component of the character variety for the links 171

L13n5885 and L6a2 whose algebraic description is a degree 4 Del Pezzo surface of the 172

K3 family and a conic bundle of the general type, respectively. Unfortunately, we could not 173

determine the character variety attached to the link L6a1. 174

3.2. The SL2(C) character variety of singular fiber IV∗ = Ẽ6 175

Figure 3. A few singular fibers in Kodaira’s classification of minimal elliptic surfaces. (a) Fiber I∗0
(alias D̃4), (b) fiber IV∗ (alias Ẽ6), and (c) fiber I I∗ (alias Ẽ8).

In Reference [22], we found connections between Kodaira singular fibers and magic 176

state quantum computing. The starting point of this viewpoint is the affine Coxeter-Dynkin 177

diagram Ẽ8 that corresponds to the fiber I I∗ in Kodaira’s classification of minimal elliptic 178

surfaces [26, p. 320], see Figure 3. Alternatively, one can see Ẽ8 as the 0-surgery on the 179

trefoil knot 31. The fundamental group of affine E8 manifold has the card seq 180

ηd(Ẽ8) = [1, 1, 2, 2, 1, 5, 3, 2, 4, 1, 1, 12, 3, 3, 4, . . .] (4)

where the bold characters mean that at least one of the subgroups of the corresponding 181

index leads to a MIC. The boundary of the manifold associated to Ẽ8 is the Seifert fibered 182

toroidal manifold [25], denoted Σ′ in [11] (Table 5). 183
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For this sequence, the coverings are fundamental groups of [22, p. 20]: 184

[Ẽ8, Ẽ6, {D̃4, Ẽ8}, {Ẽ6, Ẽ8}, Ẽ8, {BR0, D̃4, Ẽ6}, {Ẽ8}, {Ẽ6}, {D̃4, Ẽ8}, Ẽ6, · · · ]

The subgroups/coverings are fundamental groups for Ẽ8 Ẽ6, D̃4, or BR0, where BR0 is the 185

manifold obtained by zero-surgery on all circles of Borromean rings. 186

One sees that the singular fiber IV∗ = Ẽ6 appears as the degree 2 covering of I I∗ = Ẽ8. 187

The fundamental group is 188

π1(S4 \ Ẽ6) =
〈

a, b|a3b3, ab2aBA2B
〉

, (5)

where S4 is the 4-sphere. 189

We already found an invariance of the card seq of π1(L) under the Golden mean 190

substitution (the Fibonacci map) or under the Silver mean substitution when L is the Hopf 191

link and when π1(L) is in the Bianchi family of 2-generator groups. We now observe that 192

this invariance is preserved when L is the trefoil knot 31, its surgery Ẽ8 = 31(0, 1) and Ẽ6. 193

Aperiodicity is a feature of all the fundamental groups we encountered so far. 194

Figure 4. The surfaces f1(x, y, z) and f2(x, y, z) in the character variety of singular fiber IV∗ = Ẽ6.
Both surfaces are birationally equivalent to K3 surfaces.

Using Sage software [4], the SL2(C) character variety of group π1(S4 \ Ẽ6) factorizes 195

as the polynomial product 196

fH(x, y, z)(x − y)(xy − z + 1)(x2 + xy + y2 − 3) f1(x, y, z) f2(x, y, z),

where fH(x, y, z) is the SL2(C) character variety for the fundamental group of Hopf link 197

complement, f1(x, y, z) = xy3 − y2z − x2 − 2xy + z + 2 and f2(x, y, z) = y4 − x2z + xy − 198

4y2 + z + 2. A plot of the latter surfaces is in Figure 4. 199

Passing to the description of the surfaces f1(x, y, z) and f2(x, y, z) in the 3-dimensional 200

projective space as Σ1(x, y, z, t) and Σ2(x, y, z, t), we find that Σ1 is birationally equivalent to 201

a conic bundle and Σ2 to the projective plane P2. Both surfaces shows a Kodaira dimension 202

0 characteristic of K3 surfaces. 203

The magic states from ηd(Ẽ8) at index 3 and 4 are fQT and f2QB, as in Section 2.3 for 204

the manifold L7n1 and L6a3, but their algebraic geometry is not that the Hopf link. The 205

associated SL2(C) character varieties are found to contain quadric surfaces y − z2 + 2 (as 206

for ηd(Ẽ8) itself) and x2 + xy + y2 − 3, respectively. 207

Thus the existence of a magic state is not sufficient for the issue of topological quantum 208

computing. The concept of SL2(C) character variety of the fundamental group adds 209

topological and algebraic features not present in the fundamental group of the manifold. In 210

this respect, the affine E6 manifold (the singular fiber IV∗) is a potential candidate. 211
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3.3. The SL2(C) character variety of singular fiber I∗0 = D̃4 212

Singular fibers occur inside a (minimal) elliptic fibration. Let us pass to the generic 213

elliptic fiber I0, a torus, and to the singular fiber I∗0 = D̃4 shown in Figure 3a. A neighbor- 214

hood of the singular fiber inside a K3 surface leads to a plumbing diagram that is precisely 215

I∗0 [26, Figure 3.15, p. 133]. 216

As shown in the previous section, the link D̃4 corresponds to the cyclic covering of 217

degree 3 of π1(Ẽ8). The fundamental group is 218

π1(S4 \ D̃4) =
〈

a, b, c|a2c2, b2c2, aBCaBc
〉

. (6)

For this the 3-generator group, the SL2(C) character variety is made of 7 variable 219

polynomials. Making use of the software available in [4], it has the form 220

f (k, x, y, z, u, v, w) = ( fH(x, y, z) + wxk − 2k2)

(uk2 + vx − 2u)(vk2 + ux − 2v)(wk2 + xk − 2W)(k3 + wx − 2k)

(u2 − k2)(uv − wk)(v2 − k2)(uw − vk)(vw − uk)(w2 − k2)(uy − 2w)

(vy − 2k)(wy − 2u)(uz − 2k)(vz − 2w)(wz − 2v)(yk − 2v)(zk − 2u),

where fH(x, y, z) is the Hopf link polynomial of Section 2.2. 221

Thus a section at constant w and k of the character variety for the link D̃4 is simply a 222

deformation of the character variety for the Hopf link, apart from trivial linear or quadratic 223

polynomials. 224

As for the other links L encountered so far, there exists an invariance of the card seq of 225

π1(L) when L = D̃4. Let us apply the map a → b, b → abc, c → a on the 3 generators of L, 226

the substitution map T =

0 1 1
1 1 0
0 1 0

 is primitive since T3 >> 0 and the Perron-Frobenius 227

eigenvalue is the real root of the polynomial λ3 − 2λ + 1 = 0, that is λPF ∼ 1.83928, the 228

Tribonacci constant [27], see also [15] and [28, Section 4] for mathematical details. This 229

reveals the aperiodicity of the fundamental group. 230

4. Conclusion 231

We discovered connections between the SL2(C) character varieties for the fundamental 232

groups of some links, the theory of algebraic surfaces and topological quantum computing. 233

Our study was based on the Hopf link and links showing Hopf link character variety as 234

a component. In particular, we were concerned with links in the Bianchi family (like the 235

Whitehead link) and links for singular fibers in an elliptic fibration. The former define 236

3-dimensional manifolds while the latter correspond to 4-dimensional manifolds. 237

Our approach may connect to some theories of topological quantum field theory 238

[29],[30, Equation (47)] and quantum gravity [31][32]. In particular in loop quantum gravity 239

[32] the quantum states of the gravitational field are described by a map between SU(2) 240

and SL2(C) representations, where the topological quantum computing aspects can be 241

exploited. 242

One starting point for future investigations may start from Reference [33] where 243

several mathematical connections of character varieties to other branches of mathematics 244

are proposed. In particular, the Cayley’s nodal cubic surface described as Equation (1) is 245

in the family of smooth symmetric Fricke cubic surfaces [34]. The latter are isomorphic 246

to a two parameter family of character varieties for the exceptional group G2(C). The 247

group G2(C) arises as the group of automorphisms of the complex octonions, its (unique) 248

semisimple conjugacy class is 6-dimensional and relates to the E8 root lattice thanks to 249

the Fano plane representation of octonions. Three elements of G2(C), obtained from three 250

lines passing through a single point in the Fano plane, generate a finite simple subgroup of 251

G2(C) isomorphic to G2(2)′ ∼= U3(3) of order 6048. 252
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Next, the group U3(3) stabilizes the split Cayley hexagon GH(2, 2) – a [633] configuration–253

and its dual [35, Table 8]. The 63 points of the hexagon may be encoded with three-qubit 254

Pauli observables [36], the hexagon embeds 12096 = 2 × 6048 Mermin pentagrams (proofs 255

of the Kochen-Specker theorem) which correspond to the number of automorphisms of 256

G2(2) [37] and finally the dual of the hexagon is obtained from the triple products of pro- 257

jectors defining the the Hoggar SIC-POVM (symmetric informationally complete-positive 258

operator valued measure) [38], [19, Section 2.6 and Fig. 3]. 259
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