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Abstract: It is shown that the representation theory of some finitely presented groups thanks to
their SLy(C) character variety is related to algebraic surfaces. We make use of the Enriques-Kodaira
classification of algebraic surfaces and the related topological tools to make such surfaces explicit. We
study the connection of SL,(C) character varieties to topological quantum computing (TQC) as an
alternative to the concept of anyons. The Hopf link H, whose character variety is a Del Pezzo surface
fH (the trace of the commutator), is the kernel of our view of TQC. Qutrit and two-qubit magic state
computing, derived from the trefoil knot in our previous work, may be seen as TQC from the Hopf
link. The character variety of some two-generator Bianchi groups as well as that of the fundamental
group for the singular fibers E¢ and Dy contain fy;. A surface birationally equivalent to a K3 surface
is another compound of their character varieties.

Keywords: SL;(C) character varieties, algebraic surfaces, magic state quantum computing, topologi-
cal quantum computing, aperiodicity

1. Introduction

Let M be a 3- or a 4-manifold. An important invariant of M is the fundamental group
711 (M). It classifies the equivalence classes under homotopy of the loops contained in M. If
M is the complement of a knot (or a link) embedded in the 3-dimensional space, 711 (M) is
called a knot group. The Wirtinger representation explicitly describes the knot group with
generators and relations based on a diagram of the knot.

In Reference [1], the authors introduce a technique for describing all representations
of a finitely-presented group I in the group SL,(C). Representations of I in SL,(C) are
homomorphisms p : ' — SL(C). The character of a representation p isamap x, : I — C
defined by x,(y) = tr(o(y)), v € I. The set of characters of representations I' in SL,(C) is
R(T') = Hom(T, SL,(C)) which is a complex affine algebraic set. The set of characters is
defined to be X(I') = {x,|p € R(T')}.

Given a manifold M with fundamental group I' = 71 (M), one refers to the affine
algebraic set X(7r1(M)) as the character variety of M. The character varieties of some
3-manifolds of the Bianchi type have been investigated in [2] and more generally in [3]. In
the latter reference, a Sage software is developed to make the character variety explicit [4].

In the present paper, one finds that such character varieties decompose into algebraic
surfaces that can be recognized through the Enriques-Kodaira classification [5]. Such
surfaces are candidates for a new type of topological quantum computing different from
anyons [6],[7],[8]. Related ideas are in References [9,10]. A previous work of our group [11,
12] proposed to relate the fundamental group of some 3-manifolds to quantum computing
but did not employ the representation theory.
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In Section 2, we introduce our mathematical concepts about algebraic surfaces, SL(C)
character varieties and magic state quantum computing. The Hopf link H and the 3-
dimensional surface fr(x,y,z) = xyz — x> — y* — 2> + 4 lie at the ‘basement’. In Section 3,
we investigate the ‘floors’ starting with the Whitehead link and its cousins in the Bianchi
group family. Then, we find that the affine E¢ manifold — the two-covering of the affine Eg
manifold (also the O-surgery on the trefoil knot)— and affine D4 manifold —a three-covering—
are other floors upon H and fp. The SL;(C) character variety of Eg is made of two K3

surfaces in addition to fy. In conclusion, we propose a few vistas for future research.

2. Prolegomena
2.1. Algebraic surfaces

Given an ordinary projective surface S in the projective space P*> over a number field,
if S is birationally equivalent to a rational surface, the software Magma [13] determines the
map to such a rational surface and returns its type within five categories. The returned
type of S is P2 for the projective plane, a quadric surface (for a degree 2 surface in P%), a
rational ruled surface, a conic bundle or a degree p Del Pezzo surface where1 < p < 9.

A further classification may be obtained for S in P? if S has at most point singularities.
Magma computes the type of S (or rather, the type of the non-singular projective surfaces
in its birational equivalence class) according to the classification of Kodaira and Enriques
[5]. The first returned value is the Kodaira dimension of S, which is —co, 0, 1 or 2. The
second returned value further specifies the type within the Kodaira dimension —oo or 0
cases (and is irrelevant in the other two cases).

Kodaira dimension —co corresponds to birationally ruled surfaces. The second return
in this case is the irregularity g > 0 of S. So S is birationally equivalent to a ruled surface
over a smooth curve of genus g and is a rational surface if and only if g is zero.

Kodaira dimension 0 corresponds to surfaces which are birationally equivalent to a K3
surface, an Enriques surface, a torus or a bi-elliptic surface.

Every surface of Kodaira dimension 1 is an elliptic surface (or a quasi-elliptic surface
in characteristics 2 or 3), but the converse is not true: an elliptic surface can have Kodaira
dimension —oo, 0 or 1.

Surfaces of Kodaira dimension 2 are algebraic surfaces of general type.

2.2. The Hopf link

Let us anticipate the details of our approach of connecting knot/link theory, algebraic
surfaces and topological quantum computing. One takes the linking of two unknotted
curves as in Fig. 1 (Left), the obtained link is called the Hopf link H=L2al whose knot
group is defined as the fundamental group of the knot complement in the 3-sphere S3

m1(S?\ L2al) = (a,b|[a,b]) = 72, 1)

where [a,b] = abAB (with A = a~!, B = b™!) is the group theoretical commutator.

There are interesting properties of the knot group 77; of Hopf link that we would like
to mention.

First, the number of coverings of degree d of 71y (which is also the number of conjugacy
classes of index d) is precisely the sum of divisor function o (d) [14].

Second, there exists an invariance of 711 under a repetitive action of the Golden mean
substitution (the Fibonacci map) p : 4 — ab, b — a or under the Silver mean substitution
p:a — aba, b — a. The terms Golden and Silver refer to the Perron-Frobenius eigenvalue
of the substitution matrix [15, Examples 4.5 and 4.6]. Such an observation links the Hopf
link, the group 711 of the 2-torus and aperiodic substitutions.

Using Sage software [4] developed from Ref. [3], the SL,(C) character variety is the
polynomial

fu(x,y,z) = xyz — X2 — y2 —Z2 4+ 4. ()
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As expected, the 3-dimensional surface £ : fy(x,y,z) = 0 is the trace of the commu-
tator and is known to correspond to the reducible representations [16, Theorem 3.4.1]. A
picture is given in Figure 1 (Right).

If we adopt the perspective of algebraic geometry by viewing X in the 3-dimensional
projective space as

Su(x,y,z,t)  xyz — H(x* +y* +2%) + 415 =0, 3)

then Xy is a rational surface, more precisely a degree 3 Del Pezzo surface. It contains 4
simple singularities.

In Reference [9], the author proposes the representation r; — SU(2) @ SU(2) as a
model of 2-qubit quantum computing in which each factor is associated to a single qubit
located on each component of the Hopf link. Our project expands this idea by taking
the representation 7171 — SL(2,C) and the attached character variety Xp as a model of
topological quantum computing. Ideas in this direction are found in [17].

Figure 1. Left: the Hopf link. Right: a 3-dimensional picture of the SL,(C) character variety Ly for
the Hopf link complement.

2.3. Magic state quantum computing

Since 2017, following the seminal paper [18], we develop a type of universal quantum
computing based on magic states [19,20]. A magic state is a non-stabilizer pure state (a non-
eigenstate of a Pauli group gate) that adds to stabilizer operations (Clifford group unitaries,
preparations, and measurements) in order to ensure the universality (the possibility of
getting an arbitrary quantum gate). It has been recognized that some of the magic states are
fiducial states for building a minimal informationally complete positive operator valued
measure (or MIC) of the corresponding Hilbert space dimension d, based on the action of
the Pauli group P, on the state.

The lower dimensional case is the qutrit MIC arising from the fiducial state for =
(0,1,4£1). The next case is the two-qubit MIC arising from the fiducial state f,op =
(0,1, —ws, we — 1) with ws = exp(22). For such magic/fiducial states, the geometry of
triple products of projectors IT; = |i;)(ip;| built with the d?> outcomes ¢; is the Hesse
configuration (for qutrits: in dimension d = 3) and the GQ(2,2) configuration (for two-
qubits: in dimension d = 22) [19]. The latter configuration embeds the celebrated Mermin
square configuration (a 3 x 3 grid of observables) needed to prove the Kochen-Specker
theorem.

Our search of the magic states is performed with a two-generator infinite group G. A
coset table over a subgroup H of index d is built by means of the Coxeter-Todd algorithm
resulting in a permutation group. The latter may be seen as a d x d permutation matrix
whose eigenstates are the candidates for a magic (and fiducial) state. We are dealing with
low d values so that the choice is not large and many groups G do the job. Let us take G
as the modular group I' = PSL(2,Z) as in [20]. Then the appropriate subgroups are in
the family of congruence subgroups I'g(N) of level N defined as the subgroups of upper
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triangular matrices with entries taken modulo N. The index of I'j(N) is the Dedekind
function ¥(N). Thus our relevant group for the qutrit magic state is the congruence
subgroup I'y(2) and for the two-qubit magic state it is I'y(3).

Next, the two groups of interest I'y(2) and I'p(3) may be seen as fundamental groups of
non-hyperbolic 3-manifolds [11]. It is known that I' is isomorphic to the fundamental group
m1(S%\ 31) of the trefoil knot complement. The subgroups of interest of 771 (S \ 3;) = T
are attached to links L7n1 and L6a3 [12, Table 4]. Their presentation is as follows

11 (83 \ L7n1) = Ty (2) = (a,b|[a, 1?]),
m1(S%\ L6a3) = Ty(3) = {(a,b|[a, b3]).

Last but not least, in view of the presentation of the groups as commutators, the
SLy(C) character variety of the two groups is that fy(x,y,z) of the Hopf link (apart for
trivial factors y and y? — 1) as shown in Table 2. One concludes that universal quantum
computing based on the magic states for and f,op is essentially topological quantum
computing over the Hopf link. The underlying algebraic geometry for these models is the
surface drawn in Figure 1.

3. Character varieties for fundamental groups of 3-manifolds and the related algebraic
surfaces

3.1. The SLy(C) character varieties of knot groups whose reducible component is that of the Hopf
link

Figure 2. The canonical component of character varieties for (a) the Whitehead link L5al, (b) the
Whitehead link sister L13n5885, (c) the Bergé link L6a2.

We refer to some torsion free subgroups of rank 1 of Bianchi groups. A Bianchi group
I't = PSL(2,0%) < PSL(2,C) acts as a subset of orientation-preserving isometries of the
3-dimensional hyperbolic space Hj3 with Oy, the ring of integers of the imaginary quadratic
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field Z = Q(v/—k). A torsion-free subgroup T'(I) is the fundamental group 7 of a 3-
manifold defined by a knot or a link such as the figure-of-eight knot [with I'_3(12)], the
Whitehead link [with T'_1(12)] or the Borromean rings [with I'_;(24)]. See References [21]
and [24] for more cases.

Looking at [24, Table 1], We see that both the Whitehead link L5411 and its sister
L13n5885 (that have the same volume) are of the type I'_1(12). They correspond to the
3-manifolds ooct01pgg1 and ooct01ggngo, respectively. We are also interested with the links
L6a2 = 63 (the Bergé link) and link L6al = 63 [2] that are of the type T'_3(24) and I'_(6),
respectively. The latter link is related to 3-manifold otet04(ggo;.

The four links have fundamental groups of rank 1 as follows

m1(S°\ L5al) = {(a,blab®a®bAB>A?B),
71 (S%\ L13n5885) = (a,b|a’bAb*>A2BaB?),

71 (S%\ L6a2) = (a, bla*bAb> A BaB?),

1 (S%\ Léal) = (a, blab®a®b> AB®A?B?).

Remarkably, as for the Hopf link, we find that the cardinality structure of conjugacy
classes of subgroups (card seq) of the fundamental group 711(S® \ L) for the four links L is
invariant under the repetitive action of the Golden mean and the Silver mean substitution.
This points out an unexpected relationship of rank 1 Bianchi groups to aperiodicity.

The card seq of such 4 groups is

na(m1(S3\ L5a1)) = [1,3,6,17,22,79,94,412,616,1659,2938, 10641, - - -],
na(m1 (3 \ L13n5885)) = [1,3,5,12,19, 60,44, 153,221,517, 632,2223, - - - |,
na(m1(S3\ L6a2)) = [1,3,4,9,24,59,71,156,262,1208 - - -],
na(m(S3\ Léal)) = [1,3,7,23,28,134,184, 694, 1353,3466 - - - |.

Unlike the case of 771 (L) for the Hopf link L =L2al, with links of the Bianchi family,
the Golden and Silver mean maps do not preserve the original group. Only the card seq of
11 (L) is invariant for the above 4 links.

We find that the three former links have a character variety with two components. The
reducible component corresponds to the character variety of the Hopf link complement
and, as described in the introduction, is associated to a degree 3 Del Pezzo surface. The
irreducible (or canonical component) is characterized below, see Table 1 for a summary.

Using Sage software [4] developed from Ref. [3], the SL,(C) character variety for the
3 links L5al, L13n5885 and L6a2 factorizes as the product of two polynomials

fu(xy,2)f(x,y,2),

where fy(x,y,z) is the character variety for the Hopf link complement as obtained in Sec.
2.2. The polynomial f(x,y,z) consists of the irreducible SL,(C) representations of 71 (L).
For the Whitehead link, one gets f(x,y,z) = xy?z — y> — x2y — xz + 2y. It is important to
mention that the character variety for the group 711 (L) depends on the selected Wirtinger
representation. In [3, Section 4.2], the relation for the fundamental group of the Whitehead
link complement is taken to be abaB[A, B|JABAba, b] instead of the one obtained from
SnapPy [23] so that the canonical component of the character variety contains an extra third
order term.

Passing to the description of the surface f(x,y,z) in the 3-dimensional projective space
as the homogeneous polynomial X(x, y,z,t) = 0, the main algebraic properties of X remain
the same whatever the choice of the Wirtinger representation of 7r1(L). For the Whitehead
link, we find that the surface X is birationally equivalent to a conic bundle with a Kodaira
dimension 0. More precisely X belongs to the family of K3 surfaces.
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Table 1. Character varieties of fundamental groups whose reducible representations are that of the
Hopf link. Column 1 identifies the group as well as the corresponding link and 3- or 4-manifold.
Column 2 is the name of the link or the relation it has to magic state quantum computing based on
qutrits (QT) or two-qubits (2QB). Column 3 is for the relation(s) of the two-generator fundamental
groups. When the link is not the Hopf link, column 4 is for the canonical component(s) of the
representations and its (their) type as a surface in the 3-dimensional projective space.

link L name rel(s) link group 7r1 (L) | character variety f(x,y,z)
L2al Hopf [a,b] = abAB fu=xyz—x>—y> — 22 +4
. . . deg 3 Del Pezzo
I'o(2), L7n1 QT related [a,b?] YfH
I'0(3),L6a3 | 2QB related [a, b%] (> —1)fu
I 1(12),L5al |  Whitehead ab®a’hAB3A%B xy?z —y® — 2%y —xz+2y
00ct01gpgo1 WL . conic bundle, K3 type
T (12),L13n5885 sister WL a’bAb* A?BaB? x?y* —xyz — x> +1
0oct01gpo00 . . deg 4 Del Pezzo, K3 type
I _3(24), L6a2 Bergé ab®a?b* AB3 A%B? Wz — P~y —ayz+ 32— 1
otet04q0001 . conic bundle, general type
I'_7(6),L6al abABa?BAb® ABabA?baB? undetermined
Eg v* a’b3,ab’>aBA?B xy} —y?z — x> —2xy+z+2,
v =2zt xy -4y +z+2
K3 type

Table 2 provides the canonical component of the character variety for the links
L13n5885 and L6a2 whose algebraic description is a degree 4 Del Pezzo surface of the
K3 family and a conic bundle of the general type, respectively. Unfortunately, we could not
determine the character variety attached to the link Lé6al.

3.2. The SLy(C) character variety of singular fiber IV* = Eg

Cadg s (s s
-z 5

€) ©)
(b)

Figure 3. A few singular fibers in Kodaira’s classification of minimal elliptic surfaces. (a) Fiber I
(alias Dy), (b) fiber IV* (alias Eg), and (c) fiber I1* (alias Eg).

In Reference [22], we found connections between Kodaira singular fibers and magic
state quantum computing. The starting point of this viewpoint is the affine Coxeter-Dynkin
diagram Eg that corresponds to the fiber I1* in Kodaira’s classification of minimal elliptic
surfaces [26, p. 320], see Figure 3. Alternatively, one can see Eg as the O-surgery on the
trefoil knot 3;. The fundamental group of affine Eg manifold has the card seq

na(Es) = [1,1,2,2,1, 5,3,2,4,1, 1,12,3,3,4, .. ] 4)

where the bold characters mean that at least one of the subgroups of the corresponding
index leads to a MIC. The boundary of the manifold associated to Eg is the Seifert fibered
toroidal manifold [25], denoted ¥/ in [11] (Table 5).
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For this sequence, the coverings are fundamental groups of [22, p. 20]:

[ES/ Eé/ {D4/ ES}/ {E6/ ES}/ E8/ {BRO/ D4/ E‘6}/ {ES}/ {E6}/ {D4r ES}/ E6/ T ]

The subgroups/coverings are fundamental groups for Eg Eg, Dy, or BRg, where BRy is the
manifold obtained by zero-surgery on all circles of Borromean rings.

One sees that the singular fiber IV* = E¢ appears as the degree 2 covering of IT* = Eg.
The fundamental group is

1 (S*\ Eg) = <a, b|a®b®, abzaBA2B>, 5)

where S* is the 4-sphere.

We already found an invariance of the card seq of 711 (L) under the Golden mean
substitution (the Fibonacci map) or under the Silver mean substitution when L is the Hopf
link and when 771 (L) is in the Bianchi family of 2-generator groups. We now observe that
this invariance is preserved when L is the trefoil knot 3, its surgery Eg = 31(0,1) and Eg.
Aperiodicity is a feature of all the fundamental groups we encountered so far.

Figure 4. The surfaces f1(x,y,z) and f»(x,y,z) in the character variety of singular fiber I[V* = E.
Both surfaces are birationally equivalent to K3 surfaces.

Using Sage software [4], the SLy(C) character variety of group 711 (S* \ Eg) factorizes
as the polynomial product

fr(xy,2)(x —y)(xy =z + 1) (o +xy +y* = 3) fi(x,y,2) fa(x,¥,2),

where fr(x,y,z) is the SL,(C) character variety for the fundamental group of Hopf link
complement, f1(x,y,z) = xy° —y?z — x> —2xy + z+ 2 and fo(x,y,2) = y* — x’z + xy —
4y? + z + 2. A plot of the latter surfaces is in Figure 4.

Passing to the description of the surfaces f1(x,y,z) and f»(x,y, z) in the 3-dimensional
projective space as X1 (x,y, z,t) and X5 (x, y, z, ), we find that ¥ is birationally equivalent to
a conic bundle and ¥, to the projective plane P2. Both surfaces shows a Kodaira dimension
0 characteristic of K3 surfaces.

The magic states from 7,(Eg) at index 3 and 4 are for and fo0p, as in Section 2.3 for
the manifold L7n1 and L6a3, but their algebraic geometry is not that the Hopf link. The
associated SL,(C) character varieties are found to contain quadric surfaces y — z2 + 2 (as
for 4(Eg) itself) and x2 + xy + y> — 3, respectively.

Thus the existence of a magic state is not sufficient for the issue of topological quantum
computing. The concept of SL,(C) character variety of the fundamental group adds
topological and algebraic features not present in the fundamental group of the manifold. In
this respect, the affine E¢ manifold (the singular fiber IV*) is a potential candidate.
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3.3. The SLy(C) character variety of singular fiber I} = Dy

Singular fibers occur inside a (minimal) elliptic fibration. Let us pass to the generic
elliptic fiber Iy, a torus, and to the singular fiber I; = D4 shown in Figure 3a. A neighbor-
hood of the singular fiber inside a K3 surface leads to a plumbing diagram that is precisely
I [26, Figure 3.15, p. 133].

As shown in the previous section, the link D4 corresponds to the cyclic covering of
degree 3 of 71 (Eg). The fundamental group is

T (S*\ Dy) = <11, b, clac?, bzcz,aBCch>. (6)

For this the 3-generator group, the SL,(C) character variety is made of 7 variable
polynomials. Making use of the software available in [4], it has the form

flk,x,y,z,u,0,w) = (fu(x,y,z) + wxk — 2k?)
(uk? + vx — 2u) (vk* 4 ux — 20) (wk® + xk — 2W) (k3 4+ wx — 2k)
(u? — k) (uv — wk) (v* — k?) (uw — vk) (vw — uk) (w? — k%) (uy — 2w)
(vy — 2k)(wy — 2u) (uz — 2k) (vz — 2w) (wz — 2v) (yk — 2v) (zk — 2u),

where fp(x,y,z) is the Hopf link polynomial of Section 2.2.

Thus a section at constant w and k of the character variety for the link Dj is simply a
deformation of the character variety for the Hopf link, apart from trivial linear or quadratic
polynomials.

As for the other links L encountered so far, there exists an invariance of the card seq of
m1(L) when L = Dj. Let us apply the map a — b, b — abc, ¢ — a on the 3 generators of L,

011
the substitution map T = (1 1 0) is primitive since T >> 0 and the Perron-Frobenius
010

eigenvalue is the real root of the polynomial A3 —2A + 1 = 0, that is App ~ 1.83928, the
Tribonacci constant [27], see also [15] and [28, Section 4] for mathematical details. This
reveals the aperiodicity of the fundamental group.

4. Conclusion

We discovered connections between the SL,(C) character varieties for the fundamental
groups of some links, the theory of algebraic surfaces and topological quantum computing.
Our study was based on the Hopf link and links showing Hopf link character variety as
a component. In particular, we were concerned with links in the Bianchi family (like the
Whitehead link) and links for singular fibers in an elliptic fibration. The former define
3-dimensional manifolds while the latter correspond to 4-dimensional manifolds.

Our approach may connect to some theories of topological quantum field theory
[29],[30, Equation (47)] and quantum gravity [31][32]. In particular in loop quantum gravity
[32] the quantum states of the gravitational field are described by a map between SU(2)
and SL,(C) representations, where the topological quantum computing aspects can be
exploited.

One starting point for future investigations may start from Reference [33] where
several mathematical connections of character varieties to other branches of mathematics
are proposed. In particular, the Cayley’s nodal cubic surface described as Equation (1) is
in the family of smooth symmetric Fricke cubic surfaces [34]. The latter are isomorphic
to a two parameter family of character varieties for the exceptional group G,(C). The
group G;(C) arises as the group of automorphisms of the complex octonions, its (unique)
semisimple conjugacy class is 6-dimensional and relates to the Eg root lattice thanks to
the Fano plane representation of octonions. Three elements of G;(C), obtained from three
lines passing through a single point in the Fano plane, generate a finite simple subgroup of
G>(C) isomorphic to G,(2)’ = U3(3) of order 6048.
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Next, the group U3 (3) stabilizes the split Cayley hexagon GH(2,2) —a [633] configuration-
and its dual [35, Table 8]. The 63 points of the hexagon may be encoded with three-qubit
Pauli observables [36], the hexagon embeds 12096 = 2 x 6048 Mermin pentagrams (proofs
of the Kochen-Specker theorem) which correspond to the number of automorphisms of
G2(2) [37] and finally the dual of the hexagon is obtained from the triple products of pro-
jectors defining the the Hoggar SIC-POVM (symmetric informationally complete-positive
operator valued measure) [38], [19, Section 2.6 and Fig. 3].
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