Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

How to Heal the Gut’s Brain: Regeneration of the Enteric Nervous System

Version 1 : Received: 31 March 2022 / Approved: 9 April 2022 / Online: 9 April 2022 (01:49:53 CEST)

A peer-reviewed article of this Preprint also exists.

Rueckert, H.; Ganz, J. How to Heal the Gut’s Brain: Regeneration of the Enteric Nervous System. Int. J. Mol. Sci. 2022, 23, 4799. Rueckert, H.; Ganz, J. How to Heal the Gut’s Brain: Regeneration of the Enteric Nervous System. Int. J. Mol. Sci. 2022, 23, 4799.

Abstract

The neural-crest derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS dis-orders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically-induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons, but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed under-standing of how regeneration is regulated on a cellular and molecular level both in animal models with high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.

Keywords

enteric progenitor cell; zebrafish; inflammation; Hirschsprung Disease; neural crest cell; ENS neuropathies

Subject

Biology and Life Sciences, Cell and Developmental Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.