Preprint
Article

This version is not peer-reviewed.

SATLabel: A Framework for Sentiment and Aspect Terms Based Automatic Topic Labeling

Submitted:

01 April 2022

Posted:

05 April 2022

You are already at the latest version

Abstract
In this paper, we present a framework that automatically labels Latent Dirichlet Allocation (LDA) generated topics using sentiment and aspect terms from COVID-19 tweets to help the end-users by minimizing the cognitive overhead of identifying key topics labels. Social media platforms especially Twitter are considered as one of the most influential sources of information for providing public opinion related to a critical situation like the COVID-19 pandemic. LDA is a popular topic modelling algorithm that extracts hidden themes of documents without assigning a specific label. Thus automatic labelling of LDA-generated topics from COVID-19 tweets is a great challenge instead of following the manual labelling approach to get an overview of wider public opinion. To overcome this problem, in this paper, we propose a framework named \texttt{SATLabel} that effectively identifies significant topic labels using \textit{top unigrams features of sentiment terms and aspect terms clusters from LDA generated topics} of COVID-19 related tweets to uncover various issues related to the COVID-19 pandemic. The experimental results show that our methodology is more effective, simpler, and traces better topic labels compare to the manual topic labelling approach.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated