Preprint
Article

This version is not peer-reviewed.

Unstructured Data Analysis for Risk Management of Electric Power Transmission Lines

A peer-reviewed article of this preprint also exists.

Submitted:

30 March 2022

Posted:

04 April 2022

You are already at the latest version

Abstract
Risk management of electric power transmission lines requires knowledge from different areas such as environment, land, investors, regulations, and engineering. Despite the widespread availability of databases for most of those areas, integrating them into a single database or model is a challenging problem. Instead, in this paper, we use a single source, the Brazilian National Electric Energy Agency’s (ANEEL) weekly reports, which contains decisions about the electrical grid, comprising most of the areas. Since the data is unstructured (text), we employed NLP techniques such as stemming and tokenization to identify keywords related to common causes of risks provided by an expert group on energy transmission. Then, we used models to estimate the probability of each risk. Our results show that we were able to estimate the probability of 97 risks out of 233.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated