Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Linear Support Vector Machines and Head Pitch Angular Velocity Are the Best Performers to Distinguish (Sub-)Acute Neck Pain Patients and Controls Assessed with the DidRen Laser Test

Version 1 : Received: 14 March 2022 / Approved: 15 March 2022 / Online: 15 March 2022 (14:30:51 CET)

A peer-reviewed article of this Preprint also exists.

Hage, R.; Buisseret, F.; Houry, M.; Dierick, F. Head Pitch Angular Velocity Discriminates (Sub-)Acute Neck Pain Patients and Controls Assessed with the DidRen Laser Test. Sensors 2022, 22, 2805. Hage, R.; Buisseret, F.; Houry, M.; Dierick, F. Head Pitch Angular Velocity Discriminates (Sub-)Acute Neck Pain Patients and Controls Assessed with the DidRen Laser Test. Sensors 2022, 22, 2805.

Journal reference: Sensors 2022, 22, 2805
DOI: 10.3390/s22072805

Abstract

Understanding neck pain is an important societal issue. Kinematic data from sensors may help to gain insight on the pathophysiological mechanisms associated with neck pain through a quantitative sensorimotor assessment of one patient. The objective of this study was to evaluate the potential usefulness of artificial intelligence with several Machine Learning (ML) algorithms in assessing neck sensorimotor performance. Angular velocity and acceleration measured by an inertial sensor placed on the forehead during the DidRen laser test in thirty-eight acute and subacute non-specific neck pain (ANSP) patients were compared to forty-two healthy control participants (HCP). Seven supervised ML algorithms were chosen for the predictions. The most informative kinematic features were computed using Sequential Feature Selection methods. The best performing algorithm is the Linear Support Vector Machine with an accuracy of 82% and Area Under Curve of 84%. The best discriminative kinematic feature between ANSP patients and HCP is the first quartile of head pitch angular velocity. This study has shown that supervised ML algorithms could be used to classify ANSP patients and identify discriminatory kinematic features potentially useful for the clinicians in the assessment and monitoring of the neck sensorimotor performance in ANSP patients.

Keywords

Artificial intelligence; Supervised Machine Learning; Kinematics; Head rotation test; Neck pain

Subject

MEDICINE & PHARMACOLOGY, General Medical Research

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.