Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures

Version 1 : Received: 3 March 2022 / Approved: 3 March 2022 / Online: 3 March 2022 (15:04:56 CET)

A peer-reviewed article of this Preprint also exists.

Okamoto, Y.; Iwai-Shimada, M.; Nakai, K.; Tatsuta, N.; Mori, Y.; Aoki, A.; Kojima, N.; Takada, T.; Satoh, H.; Jinno, H. Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures. Toxics 2022, 10, 157. Okamoto, Y.; Iwai-Shimada, M.; Nakai, K.; Tatsuta, N.; Mori, Y.; Aoki, A.; Kojima, N.; Takada, T.; Satoh, H.; Jinno, H. Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures. Toxics 2022, 10, 157.

Abstract

DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2’-deoxycytidine (mC) and 5-hydroxymethyl-2’-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.442 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.159 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb.

Keywords

global DNA methylation; global DNA hydroxymethylation; cord blood DNA; lead; antimony; birth cohort

Subject

Medicine and Pharmacology, Pharmacology and Toxicology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.