Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Knowledge Graph Embedding for Link Prediction Models

Version 1 : Received: 15 February 2022 / Approved: 17 February 2022 / Online: 17 February 2022 (11:49:24 CET)

How to cite: Ur Rehman, E.; Saeed, A.; Minallah, N.; Hafeez, A. Knowledge Graph Embedding for Link Prediction Models. Preprints 2022, 2022020212 (doi: 10.20944/preprints202202.0212.v1). Ur Rehman, E.; Saeed, A.; Minallah, N.; Hafeez, A. Knowledge Graph Embedding for Link Prediction Models. Preprints 2022, 2022020212 (doi: 10.20944/preprints202202.0212.v1).

Abstract

For disciplines like biological science, security, and the medical field, link prediction is a popular research area. To demonstrate the link prediction many methods have been proposed. Some of them that have been demonstrated through this review paper are TransE, Complex, DistMult, and DensE models. Each model defines link prediction with different perceptions. We argue that the practical performance potential of these methods, having similar parameter values, using the fine-tuning technique to evaluate their reliability and reproducibility of results. We describe those methods and experiments; provide theoretical proofs and experimental examples, demonstrating how current link prediction methods work in such settings. We use the standard evaluation metrics for testing the model's ability.

Keywords

Knowledge Graphs; Link Prediction; Semantic-Based Models; Translation Based Embedded Models

Subject

MATHEMATICS & COMPUTER SCIENCE, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.