Preprint
Review

Knowledge Graph Embedding for Link Prediction Models

This version is not peer-reviewed.

Submitted:

15 February 2022

Posted:

17 February 2022

You are already at the latest version

Abstract
For disciplines like biological science, security, and the medical field, link prediction is a popular research area. To demonstrate the link prediction many methods have been proposed. Some of them that have been demonstrated through this review paper are TransE, Complex, DistMult, and DensE models. Each model defines link prediction with different perceptions. We argue that the practical performance potential of these methods, having similar parameter values, using the fine-tuning technique to evaluate their reliability and reproducibility of results. We describe those methods and experiments; provide theoretical proofs and experimental examples, demonstrating how current link prediction methods work in such settings. We use the standard evaluation metrics for testing the model's ability.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

678

Views

366

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated