Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Hydrogen Ion Dynamics as the Fundamental Link Between Neurodegenerative Diseases and Cancer. Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis in Multiple Sclerosis

Version 1 : Received: 1 February 2022 / Approved: 2 February 2022 / Online: 2 February 2022 (09:42:40 CET)

A peer-reviewed article of this Preprint also exists.

Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Reshkin, S.J.; Devesa, J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 2454. Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Reshkin, S.J.; Devesa, J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 2454.

Abstract

The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study, molecular, biochemical, metabolic and clinical, the intimate nature of both processes appears to be opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranged original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) becomes an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Also within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth.

Keywords

neurodegenerative diseases - multiple sclerosis; new therapeutic options for multiple sclerosis and other 24 neurodegenerative diseases. pH in cancer and neurodegenerative diseases - cancer and neurodegeneration as opposed processes - 25 metabolic e

Subject

Medicine and Pharmacology, Neuroscience and Neurology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.