We study the brain segmentation by dividing the brain into multiple tissues. Given possible brain segmentation by deep, machine learning can be efficiently exploited to expedite the segmentation process in the clinical practice. To accomplish segmentation process, a MRI and tissues transfer using generative adversarial networks is proposed. Given the better result, we propose the transfer model using GAN. For the case of the brain tissues, white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) are segmented. Empirical results show that this proposed model significantly improved segmentation results compared to the stat-of-the-art results. Furthermore, a dice coefficient (DC) metric is used to evaluate the model performance.