Preprint
Article

This version is not peer-reviewed.

MRI-GAN: MRI and Tissues Transfer Using Generative Adversarial Networks

Submitted:

31 January 2022

Posted:

01 February 2022

You are already at the latest version

Abstract
We study the brain segmentation by dividing the brain into multiple tissues. Given possible brain segmentation by deep, machine learning can be efficiently exploited to expedite the segmentation process in the clinical practice. To accomplish segmentation process, a MRI and tissues transfer using generative adversarial networks is proposed. Given the better result, we propose the transfer model using GAN. For the case of the brain tissues, white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) are segmented. Empirical results show that this proposed model significantly improved segmentation results compared to the stat-of-the-art results. Furthermore, a dice coefficient (DC) metric is used to evaluate the model performance.
Keywords: 
;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated