Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Space-based Deformation Monitoring of Coastal Urban Areas: The Case of Limassol’s Coastal Front

Version 1 : Received: 25 January 2022 / Approved: 27 January 2022 / Online: 27 January 2022 (11:30:23 CET)

A peer-reviewed article of this Preprint also exists.

Fotiou, K.; Kakoullis, D.; Pekri, M.; Melillos, G.; Brcic, R.; Eineder, M.; Hadjimitsis, D.G.; Danezis, C. Space-Based Displacement Monitoring of Coastal Urban Areas: The Case of Limassol’s Coastal Front. Remote Sens. 2022, 14, 914. Fotiou, K.; Kakoullis, D.; Pekri, M.; Melillos, G.; Brcic, R.; Eineder, M.; Hadjimitsis, D.G.; Danezis, C. Space-Based Displacement Monitoring of Coastal Urban Areas: The Case of Limassol’s Coastal Front. Remote Sens. 2022, 14, 914.

Journal reference: Remote Sens. 2022, 14, 914
DOI: 10.3390/rs14040914

Abstract

Abstract: In the last five years, the urban development of Limassol City has rapidly increased in the sectors of industry, trade, real estate, and many others. This exponentially increased urban development introduces several concerns about the aggravation of the land subsidence in the Limassol coastal front. Fifty Copernicus Sentinel-1 data from 2017-2021 have been processed and analyzed using the Sentinel Application Platform (SNAP) and the Stanford Method for Persistent Scatters (StaMPS). A case study for the identification and analysis of the elements (PS) in pixels in a series of interferograms, and then, the quantity of the land displacements in the Line of Sight, in the Limassol coastal front, is presented in this research, with the subsidence rates up to about (-5 to 4 mm / year). For the validation of the detected deformation, accurate ground-based geodetic measurements along the coastal area were used. Concordantly, taking into account that there are a significant number of skyscrapers planned to be built, this study attempts a preliminary assessment of the impact these structures will pose on the coastal front of the area of Limassol.

Keywords

Deformation Monitoring; Land Subsidence; Coastal Areas; PSI; SAR; Cyprus

Subject

EARTH SCIENCES, Geoinformatics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.