Version 1
: Received: 24 January 2022 / Approved: 25 January 2022 / Online: 25 January 2022 (13:34:35 CET)
How to cite:
Chen, M.-Y.; Nasiruzzaman, M.; Ayman Mursaleen, M.; Rao, N. On shape parameter $\alpha$ based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators. Preprints2022, 2022010383. https://doi.org/10.20944/preprints202201.0383.v1
Chen, M.-Y.; Nasiruzzaman, M.; Ayman Mursaleen, M.; Rao, N. On shape parameter $\alpha$ based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators. Preprints 2022, 2022010383. https://doi.org/10.20944/preprints202201.0383.v1
Chen, M.-Y.; Nasiruzzaman, M.; Ayman Mursaleen, M.; Rao, N. On shape parameter $\alpha$ based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators. Preprints2022, 2022010383. https://doi.org/10.20944/preprints202201.0383.v1
APA Style
Chen, M. Y., Nasiruzzaman, M., Ayman Mursaleen, M., & Rao, N. (2022). On shape parameter $\alpha$ based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators. Preprints. https://doi.org/10.20944/preprints202201.0383.v1
Chicago/Turabian Style
Chen, M., Mohammad Ayman Mursaleen and Nadeem Rao. 2022 "On shape parameter $\alpha$ based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators" Preprints. https://doi.org/10.20944/preprints202201.0383.v1
Abstract
We construct a novel family of summation-integral type hybrid operators in terms of shape parameter $\alpha\in \lbrack 0,1]$ in this paper. Basic estimates, rate of convergence, and order of approximation are also studied using the Korovkin theorem and the modulus of smoothness. We investigate the local approximation findings for these sequences of positive linear operators utilising Peetre's K-functional, Lipschitz class, and second-order modulus of smoothness.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.