Preprint
Article

Bimetallic Copper-Silver Systems Supported on Natural Clinoptilolite: Long-Term Changes in Nanospecies Composition and Stability

Submitted:

21 January 2022

Posted:

24 January 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Long-term changes in nanoparticles of copper-silver bimetallic systems on natural clinoptilolite obtained by ion exchange of Cu2+ and Ag+, and then reduced at different temperatures, have been studied. Even after storage under ambient conditions, XRD and UV-Vis diffuse reflectance spectra indicate the presence of nanospecies of reduced copper and silver. Scanning Electron Microscopy of aged bimetallic samples, reduced at the highest temperature (450oC) and the primary samples for their preparation, also aged, showed the presence of silver nanoparticles with a size of about 100 nm. They are formed in the initial ion-exchanged sample (without reduction) due to the degradation of Ag+ ions. The nanoparticles in the reduced sample are larger; in both samples they are evenly distributed over the surface. The presence of silver affects the stability and the mechanism of decomposition/oxidation of reduced copper nanospecies, and this stability is higher in bimetallic systems. The decomposition pattern of recently reduced species includes the formation of smaller nanoparticles and few-atomic clusters. This can occur, preceding the complete oxidation of Cu to ions. Quasi-colloidal silver, which is present in fresh bimetallic samples reduced at lower temperatures, transforms after aging into Ag8 clusters, which indicates the stability of these nanospecies on natural clinoptilolite.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

223

Views

280

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated