Preprint
Article

This version is not peer-reviewed.

Beam Damage Assessment Using Natural Frequency Shift and Machine Learning

A peer-reviewed article of this preprint also exists.

Submitted:

05 January 2022

Posted:

10 January 2022

You are already at the latest version

Abstract
Damage detection based on modal parameter changes becomes popular in the last decades. Nowadays are available robust and reliable mathematical relations to predict the natural frequency changes if damage parameters are known. Using these relations, it is possible to create databases containing a large variety of damage scenarios. Damage can be thus assessed by applying an inverse method. The problem is the complexity of the database, especially for structures with more cracks. In this paper, we propose two machine learning methods, namely the random forest (RF) and the artificial neural network (ANN) as search tools. The databases we developed contain damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary conditions. The crack assessment is made in two steps. First, a coarse damage location is found from the networks trained for scenarios comprising the whole beam. Afterward, the assessment is made involving a particular network trained for the segment of the beam on which the crack is previously found. Using the two machine learning methods, we succeed to estimate the crack location and severity with high accuracy for both simulation and laboratory experiments. Regarding the location of the crack, which is the main goal of the practitioners, the errors are less than 0.6%. Based on these achievements, we concluded that the damage assessment we propose, in conjunction with the machine learning methods, is robust and reliable.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated