Geiß, C.; Salas, E.; Guevara-Coto, J.; Régnier-Vigouroux, A.; Mora-Rodríguez, R.A. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells2022, 11, 404.
Geiß, C.; Salas, E.; Guevara-Coto, J.; Régnier-Vigouroux, A.; Mora-Rodríguez, R.A. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022, 11, 404.
Abstract
Macrophages are essential innate immune cells characterized by a high diversity and plasticity. In vitro, their full dynamic range of activation profiles include the classical pro-inflammatory (M1) and the alternative anti-inflammatory (M2) program. Bistability usually arises in biological systems that contain a positive-feedback loop or a mutually inhibitory, double-negative-feedback loop, which are common regulatory motifs reported for macrophage transitions from one activation state to the other one. This switch-like behavior of macrophage is observed at four different levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1 and NF-KB/p50-p65) and M2 (STAT3 and NF-KB/p50-p50) signaling pathways. Second, a switch-like behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, those changes impact metabolic gene expression leading to several switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis and nitrogen metabolism. Fourth, metabolic changes are monitored by specialized metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining the signals to promote either M1 or M2 activation. The targeting of robust molecular switches has the potential to treat a broad range of widespread diseases such as sepsis, cancer or chronic inflammatory diseases.
Keywords
macrophage, bistability, metabolism, systems biology, miRNA
Subject
Biology and Life Sciences, Animal Science, Veterinary Science and Zoology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.