Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Characterisation of the Dynamics of Leachate Contamination Plumes in the Surrounding of the Hulene - B Waste Dump, Maputo, Mozambique

Version 1 : Received: 9 December 2021 / Approved: 10 December 2021 / Online: 10 December 2021 (11:28:20 CET)

A peer-reviewed article of this Preprint also exists.

Bernardo, B.; Candeias, C.; Rocha, F. Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique. Environments 2022, 9, 19. Bernardo, B.; Candeias, C.; Rocha, F. Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique. Environments 2022, 9, 19.

Journal reference: Environments 2022, 9, 19
DOI: 10.3390/environments9020019

Abstract

The contamination of areas around solid urban waste dumps is a global challenge for the maintenance of environmental quality in large urban centres in developing countries. This study applied geophysical methods (electrical resistivity) to identify leachate contamina-tion plumes in the subsoil and groundwater, as well as to describe their temporal (2020 and 2021) dynamics in the lithology and groundwater around the Hulene - B waste dump, Maputo, Mozambique. Geophysical methods (electrical resistivity) were applied to identify possible groundwater contamination plumes, their dynamics, mechanisms of their enrichment and dispersion. Eight 400 m electrical resistivity profiles were performed, four profiles in January 2020 and four profiles in May 2021, overlapped, and the data were inverted with RES2D software. The electrical resistivity models indicate an E - W move-ment of large contamination plumes that dilute superficially into the natural surface wa-ter receiving basin and groundwater, creating zones of resistive anomalies. The thickness of the plumes in the subsurface environment was shown to be extensive in summer for profiles 1a and 2b and we associate it with the higher leachate production and migration mechanisms, which are intense in the hot and rainy season. Profile 4b showed the prop-agation of anomalous surface and subsurface areas, which was associated with higher leachate production and migration process in the new deposition zone (west). The spatial distribution of contamination plumes at both stations reduced significantly as we moved further away from the waste deposit, revealing the attenuating effect of groundwater and lithological substrate (Profile 3 a, b, and fig.7).

Keywords

Plumes; dynamics; resistivity; contamination; groundwater

Subject

EARTH SCIENCES, Geophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.